Advertisement

Journal of Superhard Materials

, Volume 41, Issue 5, pp 355–359 | Cite as

Dependence of the Detonation Nanodiamond Yield on the Detonation Process Parameters

  • V. Yu. DolmatovEmail author
  • V. Myllymäki
  • A. Vehanen
  • A. O. Dorokhov
  • M. N. Kiselev
Production, Structure, Properties
  • 10 Downloads

Abstract

To determine the dependence of the yield of detonation nanodiamonds (DNDs) on the power of explosives used, a new concept is introduced—the specific power of explosives (to which the detonation velocity of explosives and the pressure of gases in the Chapman-Jouguet plane are related), which is given by the ratio of the heat of explosion to the unit mass and time. The DNDs yield has been found to depend on the detonation velocity and pressure in the Chapman-Jouguet plane. The optimum yield of DNDs (> 5 wt %) is achieved when the specific power of explosives is 30000 to 60000 kJ/(kg·µs), the detonation velocity is 7250 to 8000 m/s, and the pressure in the Chapman-Jouguet plane is 21 to 28 GPa.

Keywords

detonation nanodiamonds power of explosives pressure in the Chapman-Jouguet plane yield of nanodiamonds detonation velocity heat of explosion composition of explosive charges 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dolmatov, V.Yu., Assessment of applicability of explosive charges for synthesis of detonation nanodiamonds, J. Superhard Mater., 2016, vol. 38, no. 5, pp. 373–376.CrossRefGoogle Scholar
  2. 2.
    Dolmatov, V.Yu., Modified method for synthesis of detonation nanodiamonds and their real elemental composition, Russian J. Appl. Chem., 2008, vol. 81, no. 10, pp. 1747–1753.CrossRefGoogle Scholar
  3. 3.
    Dolmatov, V.Yu., US Patent 7 862 792, 2011.Google Scholar
  4. 4.
    Danilenko, V.V., Vzryv: fizika, tekhnika, tekhnologiya (Explosion: Physics, Equipment, Technology), Moscow: Energoatomizdat, 2010.Google Scholar
  5. 5.
    Orlova, E.Yu., Khimiya i tekhnologiya brizantnykh vzryvchatykh veshchestv (Chemistry and Technology of Brisant Explosives), Leningrad: Khimiya, 1973.Google Scholar
  6. 6.
    Vlasov, D.A. and Kazak, A.A., A relationship between the explosion heat and destructiveness, Izv. St.-Peterburg. Tekhnol. Univer. (Tekhn. Inst.), 2009, no. 5, pp. 91–94.Google Scholar
  7. 7.
    Dremin, A.N. and Shvedov, K.K., Determination of Chapman-Jouguet pressure and duration of reaction in the detonation wave of high explosives, Zhurn. Prikl. Mekhan. Tekhn. Fiz., 1964, no. 2, pp. 154–159 [J. Appl. Mech. Rech. Phys., 1964, no. 2].Google Scholar
  8. 8.
    Loboiko, B.G. and Lubyatinsky, S.N., Reaction zones of detonating solid explosives, Combust., Explos. Shock Waves, 2000, vol. 36, no. 6, pp. 716–733.CrossRefGoogle Scholar
  9. 9.
    Baraboshkin, K.S., Kozyrev, N.V., and Komarov, V.F., A study of nanodiamond by the adsorption method, Polzunov. Vestnik., 2006, no. 2, pp. 13–18.Google Scholar
  10. 10.
    Mader, C.L., Numerical Modeling of Detonations, Berkley, Los Angeles, London: University of California Press, 1979.Google Scholar
  11. 11.
    Staver, A.M. and Lyamkin, A.I., Synthesis of ultradispersed diamonds from explosives, in Ul’tradispersnye materialy. Poluchenie i svoistva. Mezhvuzovsk. sbornik (Ultradispersed Materials. Production and Properties. Collected Papers), Krasnoyarsk: KrPI, 1990, pp. 3–22.Google Scholar
  12. 12.
    Lyamkin, A.I., The formation of nanodiamonds during the dynamic action on carbon-containing compounds, Dr. Sci. (Phys.-Math.) Dissertation, Krasnoyarsk, 2007.Google Scholar
  13. 13.
    Danilenko, V.V., Specific features of synthesis of detonation nanodiamonds, Combust., Explos. Shock Waves, 2005, vol. 41, no. 5, pp. 577–588.CrossRefGoogle Scholar
  14. 14.
    Anisichkin, YE, Mal’kov, I.Yu., and Sagdiyev, F.A., Synthesis of diamond by detonation of aromatic nitro compounds, in V Vsesoyuz. soveshachanie po detonatsii. Sb. dokl. (Proc. Vth All-Union Meeting on Detonation), Krasnoyarsk, 5–12 August, 1991, Krasnoyarsk, 1991, vol. 1, pp. 27–30.Google Scholar
  15. 15.
    Babushkin, A.Yu., Lyamkin, A.I., and Staver, A.M., Special features of synthesis of carbon-based ultradispersed material from explosives, in V Vsesoyuz. soveshachanie po detonatsii. Sb. dokl. (Proc. Vth All-Union Meeting on Detonation), Krasnoyarsk, 5–12 August, 1991, Krasnoyarsk, 1991, vol. 1, pp. 81–83.Google Scholar
  16. 16.
    Pershin, S.V., Tsaplin, D.N., and Antipenko, A.G., On the possibility of diamond synthesis by detonation of tetryl, V Vsesoyuz. soveshachanie po detonatsii. Sb. dokl. (Proc. Vth All-Union Meeting on Detonation), Krasnoyarsk, 5–12 August, 1991, Krasnoyarsk, 1991, vol. 2, pp. 233–236.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • V. Yu. Dolmatov
    • 1
    Email author
  • V. Myllymäki
    • 2
  • A. Vehanen
    • 3
  • A. O. Dorokhov
    • 3
  • M. N. Kiselev
    • 3
  1. 1.FSUE SCTB TechnologSt. PetersburgRussian Federation
  2. 2.Carbodeon Ltd. OyVantaaFinland
  3. 3.JSC Zavod PlastmassKopeiskRussian Federation

Personalised recommendations