Advertisement

Journal of Superhard Materials

, Volume 41, Issue 5, pp 345–354 | Cite as

Corrosion Behavior of WC–10 wt % Ni3Al Composite in Acidic Media

  • Xiaoqiang Li
  • Minai ZhangEmail author
  • Xiaojian Xia
  • Ting Cao
  • Liang Liang
  • Huiyun Li
Production, Structure, Properties
  • 8 Downloads

Abstract

The room temperature corrosion behavior of WC–10 wt % Ni3Al composite and WC–8 wt % Co hardmetal in various acidic solutions (1 M H2SO4, 1 M HCl and 1 M HNO3) were compared and investigated utilizing immersion test, electrochemical measurement and surface analytical techniques. The results show that in H2SO4 solution WC–10Ni3Al composite has a nobler free corrosion potential, lower corrosion current density (Icorr) values and intrinsically better corrosion resistance than WC–8Co. Notably, pseudopassivity was observed in the polarization curves of WC–10Ni3Al in both HCl and H2SO4 solutions. In addition, although WC–10Ni3Al is corroded much faster in HNO3 solution than in the other two mediums, it exhibits a superior corrosion resistance compared to WC–8Co. The corrosion mechanism of WC–10Ni3Al composites is dominated by Ni dissolution.

Keywords

WC–10Ni3Al composite intermetallics corrosion polarization pseudopassivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fang, Z.Z., Wang, X., Ryu, T., Hwang, K.S., and Sohn, H.Y., Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide–A review, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, no. 2, pp. 288–299.CrossRefGoogle Scholar
  2. 2.
    Liang, L., Liu, X., Li, X.-q., and Li, Y.-Y., Wear mechanisms of WC–10Ni3Al carbide tool in dry turning of Ti6Al4V, Int. J. Refract. Met. Hard Mater., 2015, vol. 48, pp. 272–285.CrossRefGoogle Scholar
  3. 3.
    Wang, X., Hwang, K.S., Koopman, M., Fang, Z.Z., and Zhang, L., Mechanical properties and wear resistance of functionally graded WC–Co, Int. J. Refract. Met. Hard Mater., 2013, vol. 36, pp. 46–51.CrossRefGoogle Scholar
  4. 4.
    Engqvist, H., Beste, U., and Axén, N., The influence of pH on sliding wear of WC-based materials, Int. J. Refract. Met. Hard Mater., 2000, vol. 18, no. 2, pp. 103–109.CrossRefGoogle Scholar
  5. 5.
    Hochstrasser, S., Mueller, Y., Latkoczy, C., Virtanen, S., and Schmutz, P., Analytical characterization of the corrosion mechanisms of WC–Co by electrochemical methods and inductively coupled plasma mass spectroscopy, Corros. Sci., 2007, vol. 49, no. 4, pp. 2002–2020.CrossRefGoogle Scholar
  6. 6.
    Exner, H.E., Physical and chemical nature of cemented carbides, Int. Metals Rev., 1979, vol. 24, no. 1, pp. 149–173.Google Scholar
  7. 7.
    Human, A.M. and Exner, H.E., Electrochemical behaviour of tungsten-carbide hardmetals, Mater. Sci. Eng. A, 1996, vol. 209, no. 1, pp. 180–191.CrossRefGoogle Scholar
  8. 8.
    Human, A.M., Roebuck, B., and Exner, H.E., Electrochemical polarisation and corrosion behaviour of cobalt and Co(W,C) alloys in 1 N sulphuric acid, Mater. Sci. and Eng., A, 1998, vol. 241, no. 1, pp. 202–210.CrossRefGoogle Scholar
  9. 9.
    Sutthiruangwong, S., and Mori, G., Corrosion properties of Co-based cemented carbides in acidic solutions, Int. J. Refract. Met. Hard Mater., 2003, vol. 21, no. 3, pp. 135–145.CrossRefGoogle Scholar
  10. 10.
    Kellner, F.J.J., Hildebrand, H., and Virtanen, S., Effect of WC grain size on the corrosion behavior of WC–Co based hardmetals in alkaline solutions, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, no. 4, pp. 806–812.CrossRefGoogle Scholar
  11. 11.
    Lin, N., Wu, C.H., He, Y.H., and Zhang, D.F., Effect of Mo and Co additions on the microstructure and properties of WC–TiC–Ni cemented carbides, Int. J. Refract. Met. Hard Mater., 2012, vol. 30, no. 1, pp. 107–113.CrossRefGoogle Scholar
  12. 12.
    Wan, W., Xiong, J., Yang, M., Guo, Z., Dong, G., and Yi, C., Effects of Cr3C2 addition on the corrosion behavior of Ti(C, N)-based cermets, Int. J. Refract. Met. Hard Mater., 2012, vol. 31, pp. 179–186.CrossRefGoogle Scholar
  13. 13.
    Zhang, Q., Lin, N., and He, Y., Effects of Mo additions on the corrosion behavior of WC–TiC–Ni hardmetals in acidic solutions, Int. J. Refract. Met. Hard Mater., 2013, vol. 38, pp. 15–25.CrossRefGoogle Scholar
  14. 14.
    Su, W., Sun, Y., Liu, J., Feng, J., and Ruan, J., Effects of Ni on the microstructures and properties of WC–6Co cemented carbides fabricated by WC–6(Co, Ni) composite powders, Ceram. Int., 2015, vol. 41, no. 2, Part B, pp. 3169–3177.CrossRefGoogle Scholar
  15. 15.
    Andrews, N., Giourntas, L., Galloway, A.M., and Pearson, A., Erosion-corrosion behaviour of zirconia, WC–6Co, WC–6Ni and UNS S31600, Int. J. Refract. Met. Hard Mater., 2015, vol. 48, pp. 229–237.CrossRefGoogle Scholar
  16. 16.
    Konadu, D.S., Merwe, J.V.D., Potgieter, J.H., Potgieter-Vermaak, S., and Machio, C.N., The corrosion behaviour of WC–VC–Co hardmetals in acidic media, Corros. Sci., 2010, vol. 52, no. 9, pp. 3118–3125.CrossRefGoogle Scholar
  17. 17.
    Lin, N., He, Y., Wu, C., Liu, S., Xiao, X., and Jiang, Y., Influence of TiC additions on the corrosion behaviour of WC–Co hardmetals in alkaline solution, Int. J. Refract. Met. Hard Mater., 2014, vol. 46, pp. 52–57.CrossRefGoogle Scholar
  18. 18.
    Gao, L.X., Zhou, T., Zhang, D.Q., and Lee, K.Y., Microstructure and anodic dissolution mechanism of brazed WC–Ni composite coatings, Corros. Eng. Sci. and Tech., 2014, vol. 49, no. 3, pp. 204–208.CrossRefGoogle Scholar
  19. 19.
    Bozzini, B., Serra, M., Fanigliulo, A., and Bogan, F., Corrosion behaviour of WC–Co based hardmetalin neutral chloride and acid sulphate media, Mater. Corros., 2002, vol. 53, no. 5, pp. 328–334.CrossRefGoogle Scholar
  20. 20.
    Bozzini, B., De Gaudenzi, G.P., and Mele, C., Electrochemical behaviour of alloy CoW0·013C0·001 in acidic sulphate solutions, Corros. Eng. Sci. and Tech., 2005, vol. 40, no. 2, pp. 149–157.CrossRefGoogle Scholar
  21. 21.
    Sikka, V.K., Deevi, S.C., Viswanathan, S., Swindeman, R.W., and Santella, M.L., Advances in processing of Ni3Al-based intermetallics and applications, Intermetallics, 2000, vol. 8, no. 9, pp. 1329–1337.CrossRefGoogle Scholar
  22. 22.
    Wagle, S., Kaneno, Y., Nishimura, R., and Takasugi, T., Evaluation of the wear properties of dual two-phase Ni3Al/Ni3V intermetallic alloys, Tribo. Int., 2013, vol. 66, pp. 234–240.CrossRefGoogle Scholar
  23. 23.
    Sikka, V.K., Mavity, J.T., and Anderson, K. Processing of nickel aluminides and their industrial applications. High Temperature Aluminides and Intermetallics. Oxford: Elsevier, 1992, pp. 712–721.CrossRefGoogle Scholar
  24. 24.
    Tiegs, T.N., Alexander, K.B., Plucknett, K.P., Menchhofer, P.A., Becher, P.F., and Waters, S.B., Ceramic composites with a ductile Ni3Al binder phase, Mater. Sci. Eng. A, 1996, vol. 209, no. 1, pp. 243–247.CrossRefGoogle Scholar
  25. 25.
    Habibi, Rad M., Ahmadian, M., and Golozar, M.A., Investigation of the corrosion behavior of WC–FeAl–B composites in aqueous media, Int. J. Refract. Met. Hard Mater., 2012, vol. 35, pp. 62–69.CrossRefGoogle Scholar
  26. 26.
    Long, J., Zhang, Z., Xu, T., and Lu, B., Microstructure, mechanical properties and fracture behavior of WC-40 vol % Ni3Al composites with various carbon contents, Int. J. Refract. Met. Hard Mater., 2013, vol. 40, pp. 2–7.CrossRefGoogle Scholar
  27. 27.
    Li, X., Chen, J., Zheng, D., Qu, S., and Xiao, Z., Preparation and mechanical properties of WC-10 Ni3Al cemented carbides with plate-like triangular prismatic WC grains, J. Alloys Compd., 2012, vol. 544, pp. 134–140.CrossRefGoogle Scholar
  28. 28.
    Li, X., Zhang, M., Zheng, D., Cao, T., Chen, J., and Qu, S., The oxidation behavior of the WC-10 wt % Ni3Al composite fabricated by spark plasma sintering, J. Alloys Compd., 2015, vol. 629, pp. 148–154.CrossRefGoogle Scholar
  29. 29.
    Nazarian Samani, M., Shokuhfar, A., Kamali, A.R., and Hadi, M., Production of a nanocrystalline Ni3Al-based alloy using mechanical alloying, J. Alloys Compd., 2010, vol. 500, no. 1, pp. 30–33.CrossRefGoogle Scholar
  30. 30.
    Bard, Allen J. and Faulkner, Larry R., Electrochemical Methods: Fundamentals and Applications. Texas: Wiley, 2000.Google Scholar
  31. 31.
    Sutthiruangwong, S., Mori, G., and Kösters, R., Passivity and pseudopassivity of cemented carbides, Int. J. Refract. Met. Hard Mater., 2005, vol. 23, no. 2, pp. 129–136.CrossRefGoogle Scholar
  32. 32.
    Mao, Q., Yang, Q., Xiong, W., Li, S., Zhang, M., and Ruan, L., Corrosion behavior of Ni3Al-bonded TiC-based cermets in H2SO4 and NaOH solutions, Ceram. Int., 2018, vol. 44, pp. 13303–13312.CrossRefGoogle Scholar
  33. 33.
    Xu, Y., Yoshikawa, H., and Jang, J.H., Characterization of surface structure evolution in Ni3Al foil catalysts by hard X-ray photoelectron spectroscopy, J. Phys. Chem. C, 2010, vol. 114, pp. 6047–6053.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • Xiaoqiang Li
    • 1
  • Minai Zhang
    • 1
    • 2
    Email author
  • Xiaojian Xia
    • 1
  • Ting Cao
    • 1
  • Liang Liang
    • 1
  • Huiyun Li
    • 3
  1. 1.Guangdong Key Laboratory for Advanced Metallic Materials Fabrication and FormingSouth China University of TechnologyGuangzhouChina
  2. 2.Chemical Engineering and Materials ScienceUniversity of CaliforniaIrvineUSA
  3. 3.Dongguan hyperpowder Co. Ltd.DongguanChina

Personalised recommendations