Advertisement

Journal of Superhard Materials

, Volume 40, Issue 6, pp 384–391 | Cite as

The Impact of Hydrogen-Free Ion Nitriding on Physicomechanical and Performance Characteristics of Hard Alloys T5K10 and T15K6

  • P. V. Kaplun
  • E. B. SorokaEmail author
  • A. V. Snozik
Production, Structure, Properties
  • 2 Downloads

Abstract

It has been shown that ion nitriding of hard alloys in hydrogen-free medium leads to an increase of the average value of microhardness to 20.1 GPa and a rise of the breaking load by 15% at cantilevered bending. The turning of steels using nitrided inserts results in the reduction of the friction coefficient and the cutting force to 10% of their corresponding values before nitriding, and the decrease of wear rate by half. The efficiency of nitriding is confirmed by production tests during the finish and rough machining.

Keywords

hydrogen-free ion nitriding hard alloy microhardness cantilevered bending cutting force thermoemf (thermoelectromotive force) friction coefficient wear rate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Loshak, M.G., Uprochnenie tverdykh splavov (Strengthening of Hard Alloys), Kiev: Naukova Dumka, 1977.Google Scholar
  2. 2.
    Vereshchaka, A.S., Karpushevski, B., and Dyubner, L.G., Analysis of the Main Aspects of the Problem Regarding the Use of Multilayered Composite Nanostructured Functional Coatings for Cutting Tools, Suchasni tekhnologii v mashynobuduvanni, Kharkiv: NTU “KhPI”, 2008, issue 2, pp. 87–100.Google Scholar
  3. 3.
    Beresnev, V.M., Development Principles of Ion-Plasma Multicomponent Multifunctional Coatings with High Performance Properties, Extended Abstract of Cand. Sci. (Eng.) Dissertation, 2006, Kharkiv.Google Scholar
  4. 4.
    Vetter, J., Burgmer, W., Dederichs, H.G., et al., The Architecture and Performance of Multilayer and Compositionally Gradient Coatings Made by Cathodic Arc Evaporation, Surf. Coat. Technol., 1993, vol. 61, no. 1–3, pp. 209–214.CrossRefGoogle Scholar
  5. 5.
    Soroka, E., Lyashenko, B., Qiao, S., et al., Tribological Behavior and Cutting Performance of PVD-Tin Coating/Substrate System with Discontinuous Surface Architecture, Rare Metal Mater. Eng., 2011, vol. 40, no. 4, pp. 580–584.CrossRefGoogle Scholar
  6. 6.
    Rodichev, Yu., Soroka, O., and Maiboroda, V., Strength and Damageability of Cutting Edges of Carbide Inserts at Local Loading, Materialy IV Mezhdunar. nauk.-tekhn. konf. “Damaging of Materials during their Service, Methods of Diagnostics and Prediction”, Ternopil: Vydavnytstvo TNTU, 2015.Google Scholar
  7. 7.
    Kozlyuk, A. Yu., Ovcharenko, A.G., and Kurepin, M.O., Substantiation of the Scheme for Combined Magnetic Pulse Processing of Cutting Tools, Polzunkovyi Vestnik, 2012, no. 1, pp. 131–134.Google Scholar
  8. 8.
    Ovcharenko, A.G., Kozlyuk, A.Yu., and Kurepin, M.O., Enhancing the Wear Resistance of Hard Alloy Inserts, Obrabotka Metallov, 2010, no. 2, pp. 13–15.Google Scholar
  9. 9.
    Soroka, O., Rodichev, Yu., Kovalov, V., and Vasylchenko, Ya., Hardening of Carbide Cutting Tools for Heavy Engineering Industry based on the Surface and Bulk Modification by Physical Methods, Visnyk TNTU, 2013, vol. 71, no. 3, pp. 143–145.Google Scholar
  10. 10.
    Takase, Takao, Current trends in the development of surface hardening technology, Metals in Engineering, 1977, vol. 17, no. 5, pp. 6–11.Google Scholar
  11. 11.
    Ovseyan, G.S., Author’s Certificate for Invention 1044676, USSR, IPC C23C 11/14, A Technique for Gas Nitriding of Hard Alloy Inserts, 1983, Byul. no. 36.Google Scholar
  12. 12.
    Lakhtin, Yu.M. and Kogan, Ya.D., Azotirovanie stali (Steel Nitriding), Moscow: Mashinostroenie, 1976.Google Scholar
  13. 13.
    Arzamasov, B.N., Khimiko-termicheskaya obrabotka metallov v aktivizirovannykh gazovykh sredakh (Thermochemical Treatment of Metals in Activated Gas Environments), Moscow: Mashinostroenie, 1979.Google Scholar
  14. 14.
    Lakhtin, Yu.M. and Kogan, Ya.D., Struktura i prochnost’azotirovannykh splavov (Structure and Strength of Nitrided Alloys), Moscow: Metallurgiya, 1982.Google Scholar
  15. 15.
    Kogan, Ya.D., The Structure and Strength of Activated Alloys, Novye metody khimiko-termicheskoi obrabotki v mashinostroenii, Moscow: MADI, 1982.Google Scholar
  16. 16.
    Svidenko, E.V., Increasing (Enhancing) of Operating Ability of Nitrided Alloys, Cand. Sci. (Eng.) Dissertation, 2016, Orenburg.Google Scholar
  17. 17.
    Kaplun, V.G., Scientific Foundations of the Technology for Strengthening of Machine Parts and Tools by Ion Nitriding in Hydrogen-Free Environments, Doct. Sci. (Eng.) Dissertation, 1990, Khmelnytskyi.Google Scholar
  18. 18.
    Kaplun, V.G. and Kaplun, P.V., Ionnoe azotirovanie v bezvodorodnykh sredakh (Ion Nitriding in Hydrogen-Free Environments), Khmelnytskyi: KhNU, 2015.Google Scholar
  19. 19.
    Kaplun, V.G., Pastukh, I.M., and Snozik, O.V., Optimization of Parameters of the Ion Nitriding Mode for Hard-Alloy Tooling, Problemy suchasnogo mashynobuduvannia: Zb. nauk. pr., Khmelnytskyi: TUP, 1996.Google Scholar
  20. 20.
    Patent of Ukraine 23328 A, IPC C23C8/36, Sposib khimiko-termichnoi obrobky tverdosplavnykh plastyn (A Technique of Thermochemical Processing of Hard-Alloy Inserts), Publ. August 31, 1998, Byul. no. 4.Google Scholar
  21. 21.
    Vereshchaka, A.S. and Tret’yakov, I.P., Rezhushchie intrumenty s iznosostoikimi pokrytiyami (Cutting Tools with Wear-Resistant Coatings), Moscow: Mashinostroenie, 1986.Google Scholar
  22. 22.
    Roizman, V.P. and Kovtun, I.I., Hardware-Software Acoustic Emission Complex, Vymiriuvalna tekhnika v tekhnologichnykh protsesakh, 1997, no. 1, pp. 33.Google Scholar
  23. 23.
    Bobrov, V.F., Osnovy teorii rezaniya metallov (Foundations of the Metal Cutting Theory), Moscow: Mashinostroenie, 1975.Google Scholar
  24. 24.
    Zorev, N.N., Voprosy mekhaniki protsessa rezaniya metallov (Issues of Mechanics of the Metal Cutting Process), Moscow: Mashgiz, 1956.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Khmelnytsky National UniversityKhmelnytskyiUkraine
  2. 2.Pisarenko Institute for Problems of StrengthNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations