Journal of Superhard Materials

, Volume 40, Issue 6, pp 374–383 | Cite as

Theoretical and Experimental Evidence for a Post-Cotunnite Phase Transition in Hafnia at High Pressures

  • Yahya Al-KhatatbehEmail author
  • Khaldoun Tarawneh
  • Hussein Al-Taani
  • Kanani K. M. Lee
Production, Structure, Properties


Using first-principles density-functional theory (DFT) computations, we have predicted a new post-cotunnite (OII) phase of hafnia (HfO2) at high pressures. Our computations, using the generalized gradient approximation (GGA), predict a phase transition from OII to a Fe2P-type structure at ~ 120 GPa (~ 140 GPa) with a slight volume collapse at the transition pressure of ~ 0.2% (~ 0.1%) between the two phases using the second- (third-) order Birch-Murnaghan equation of state, respectively. The prediction of the new phase is consistent with recent experiments and computations performed on similar dioxides titania (TiO2) and zirconia (ZrO2) at extreme pressure-temperature (p-T) conditions. Importantly, our theoretical prediction for the OII → Fe2P transition in HfO2 is experimentally supported by the re-analysis of X-ray diffraction patterns of HfO2 at extreme pressure-temperature conditions. Additionally, the equation of state and hardness of the predicted phase have been computed and show that Fe2P-type phase while less compressible than the OII phase is nearly identical in hardness, indicating that none of the HfO2 phases qualify as superhard.


phase transitions equation of state hardness first-principles X-ray diffraction phase stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Khosman, J.M., Khan, A., and Kordesh, M.E., Amorphous hafnium oxide thin films for antireflection optical coatings, Surf. Coatings Technol., 2008, vol. 202, pp. 2500–2502.CrossRefGoogle Scholar
  2. 2.
    Torchio, P., Gatto, A., Alvisi, M., et al., High-reflectivity HfO2/SiO2 ultraviolet mirrors, Appl. Opt., 2002, vol. 41, pp. 3256–3261.CrossRefGoogle Scholar
  3. 3.
    Choi, J.H., Mao, Y., and Chang, J.P., Development of hafnium based high-k materials—A review, Mater. Sci. Eng. R Reports, 2011, pp. 97–136.Google Scholar
  4. 4.
    Zhu, H., Tang, C., Fonseca LRC, et al., Recent progress in ab initio simulations of hafnia-based gate stacks, J. Mater. Sci., 2012, vol. 47, pp. 7399–7416.CrossRefGoogle Scholar
  5. 5.
    Robertson, J. and Wallace, R.M., High-K materials and metal gates for CMOS applications, Mater. Sci. Eng. R, 2015, vol. 88, pp. 1–41.CrossRefGoogle Scholar
  6. 6.
    Bersuker, G., Gilmer, D.C., Veksler, D., et al., Metal oxide resistive memory switching mechanism based on Conductive filament properties, J. Appl. Phys., 2011, vol. 110, no. 12, art. 124518.CrossRefGoogle Scholar
  7. 7.
    Privitera, S., Bersuker, G., Butcher, B., et al., Microscopy study at the conductive filament in HfO2 resistive switching memory devices, Microelectron. Eng., 2013, vol. 109, pp. 75–78.CrossRefGoogle Scholar
  8. 8.
    Lin, KL, Hou, TH, Shieh, J., et al., Electrode dependence of filament formation in HfO2 resistive-switching memory, J. Appl. Phys., 2011, vol. 109, art. 084104.CrossRefGoogle Scholar
  9. 9.
    Al-Khatatbeh, Y., Lee, KKM., and Kiefer, B., Phase diagram up to 105 GPa and mechanical strength of HfO2, Phys. Rev. B., 2010, vol. 82, art. 144106.CrossRefGoogle Scholar
  10. 10.
    Haines, J., Leger, J.M., Hull, S., et al., Characterization of the cotunnite-type phases of zirconia and hafnia by neutron diffraction and Raman spectroscopy, J. Am. Ceram. Soc., 1997, vol. 80, pp. 1910–1914.CrossRefGoogle Scholar
  11. 11.
    Desgreniers, S. and Lagarec, K., High-density ZrO2 and HfO2: Crystalline structures and equation of state, Phys.Rev. B., 1999, vol. 59, pp. 8467–8472.CrossRefGoogle Scholar
  12. 12.
    Adams, D.M., Leonard, S., Russell, D.R., et al., X-ray diffraction study of hafnia under high pressure using synchrotron radiation, J. Phys. Chem. Solids, 1991, vol. 52, pp. 1181–1186.CrossRefGoogle Scholar
  13. 13.
    Leger, J.M., Haines, J., and Blanzat, B., Materials potentially harder than diamond: Quenchable high-pressure phases of transition metal dioxides, J. Mater. Sci. Lett., 1994, vol. 13, pp. 1688–1690.CrossRefGoogle Scholar
  14. 14.
    Jayaraman, A., Diamond anvil cell and high-pressure physical investigations, Rev. Mod. Phys., 1983, vol. 55, pp. 65–108.CrossRefGoogle Scholar
  15. 15.
    Ohtaka, O., Yamanaka, T., Kume, S., et al., Synthesis and X-ray structural analysis by the Rietveld method of orthorhombic hafnia, J. Ceram. Soc. Japan., 1991, vol. 99, pp. 826–827.CrossRefGoogle Scholar
  16. 16.
    Ohtaka, O., Yamanaka, T., Kume, S., et al., Structural analysis of orthorhombic hafnia by neutron powder diffraction, J. Am. Ceram. Soc., 1995, vol. 78, pp. 233–237.CrossRefGoogle Scholar
  17. 17.
    Arashi, H., Yagi, T., Akimoto, S., et al., New high-pressure phase of ZeO2 above 35 GPa, Phys. Rev., B., 1990, vol. 41, pp. 4309–4313.CrossRefGoogle Scholar
  18. 18.
    Leger, J.M., Tomaszewski, P.E., Atouf, A., et al., Pressure-induced phase transitions and volume changes in HfO2 up to 50 GPa, Phys. Rev. B., 1993, vol. 48, pp. 93–98.CrossRefGoogle Scholar
  19. 19.
    Mandal, G., Jana, R, Saha, P., et al., Study of structural phase transition of HfO2 at high pressure, Mater. Today Proc., 2016, vol. 3, pp. 2997–3001.CrossRefGoogle Scholar
  20. 20.
    Mandal, G. and Das, P., The pressure induced structural phase transition of HfO2, AIP Conf. Proc., 2017, art. 30014.Google Scholar
  21. 21.
    Terki, R., Bertrand, G., Aourag, H., et al., Cubic-tetragonal phase transition in HfO2 from computational study, Mater. Lett., 2008, vol. 62, pp. 1484–1486.CrossRefGoogle Scholar
  22. 22.
    Jaffe, J.E., Bachorz, R.A., and Gutowski, M., Low-temperature polymorphs of ZrO2 and HfO2: A density-functional theory study, Phys. Rev. B., 2005, vol. 72, art. 144107.CrossRefGoogle Scholar
  23. 23.
    Lowther, J.E., Dewhurst, J.K., Leger, J.M., et al., Relative stability of ZrO2 and HfO2 structural phases, Phys. Rev.B., 1999, vol. 60, pp. 14485–14488.CrossRefGoogle Scholar
  24. 24.
    Dewhurst, J. E. and Lowther, J.E., Highly coordinated metal dioxides in the cotunnite structure, Phys. Rev. B, 2001, vol. 64, art. 14104.CrossRefGoogle Scholar
  25. 25.
    Kang, J., Lee, E-C., and Chang, K.J., First-principles study of structural phase transformation of hafnia under pressure, Phys. Rev. B, 2003, vol. 68, art. 54106.CrossRefGoogle Scholar
  26. 26.
    Ohtaka, O., Fukui, H., Kunisada, T., et al., Phase relations and volume changes of hafnia under high pressure and high temperature., J. Am. Ceram. Soc., 2001, vol. 84, pp. 1369–1373.CrossRefGoogle Scholar
  27. 27.
    Al-Khatatbeh, Y., Lee, KKM, and Kiefer, B., Phase relations and hardness trends of ZrO2 phases at high pressure, Phys. Rev. B, 2010, vol. 81, art. 214102.CrossRefGoogle Scholar
  28. 28.
    Ohtaka, O., Andrault, D., Bouvier, P., et al., Phase relations and equation of state of ZrO2 to 100 GPa, J. Appl. Crystallogr., 2005, vol. 38, pp. 727–733.CrossRefGoogle Scholar
  29. 29.
    Ohtaka, O., Fukui, H., Funakoshi, K., et al., Phase relations and EOS of ZrO2 under high-temperature and high-pressure, High Press. Res., 2002, vol. 22, pp. 221–226.CrossRefGoogle Scholar
  30. 30.
    Ohtaka, O., Fukui, H., Kunisada, T., et al., Phase relations and EOS of ZrO2 under high temperature and high pressure, Phys. Rev. B, 2001, vol. 63, art. 174108.CrossRefGoogle Scholar
  31. 31.
    Fadda, G., Colombo, L., and Zanzotto, G., First-principles study of structural and elastic properties of zirconia, Phys. Rev. B., 2009, vol. 79, art. 214102.CrossRefGoogle Scholar
  32. 32.
    Al-Khatatbeh, Y., Lee, KKM, and Kiefer, B., High pressure behavior of TiO2 as determined by experiment and theory, Phys. Rev. B., 2009, vol. 79, art. 13411.Google Scholar
  33. 33.
    Dubrovinskaia, N.A., Dubrovinsky, L.S., Ahuja, R., et al., Experimental and theoretical identification of a new high-pressure TiO2 polymorph, Phys. Rev. Lett., 2001, vol. 87, art. 275501.CrossRefGoogle Scholar
  34. 34.
    Dubrovinsky, L.S., Dubrovinskaia, N.A., Swamy, V., et al., The hardest known oxide, Nature, 2001, vol. 410, pp. 653–654.CrossRefGoogle Scholar
  35. 35.
    Nishio-Hamane, D., Shimizu, A., Nakahira, R., et al., The stability and equation of state for the cotunnite phase of TiO2 up to 70 GPa, Phys. Chem. Miner., 2009, vol. 37, pp. 129–136.CrossRefGoogle Scholar
  36. 36.
    Mattesini, M., de Almeida, J.S., Dubrovinsky, L. et al., High-pressure and high-temperature synthesis of the cubic TiO2 polymorph, Phys. Rev. B., 2004, vol. 70, art. 212101.CrossRefGoogle Scholar
  37. 37.
    Caravaca, M.A., Mino, J.C., Pérez, V.J., et al., Ab initio study of the elastic properties of single and polycrystal TiO2, ZrO2 and HfO2 in the cotunnite structure, J. Phys. Condens. Mater., 2009, vol. 21, art. 15501.CrossRefGoogle Scholar
  38. 38.
    Muscat, J., Swamy, V., and Harrison N.M., First-principles calculations of the phase stability of TiO2, Phys. Rev. B., 2002, vol. 65, art. 224112.CrossRefGoogle Scholar
  39. 39.
    Dekura, H., Tsuchiya, T., Kuwayama, Y., et al., Theoretical and experimental evidence for a new post-cotunnite phase of titanium dioxide with significant optical absorption, Phys. Rev. Lett., 2011, vol. 107, art. 45701.CrossRefGoogle Scholar
  40. 40.
    Nishio-Namane, D., Dekura, H., Seto, Y, et al., Theoretical and experimental evidence for the new post-cotunnite phase transition in zirconia at high pressure, Phys. Chem. Miner., 2015, vol. 42, pp. 385–392.CrossRefGoogle Scholar
  41. 41.
    Meng, X., Wang, L., Liu, D., et al., Discovery of Fe2P-type Ti(Zr/Hf)206 photocatalysts toward water splitting, Chem. Mater., 2016, vol. 28, pp. 1335–1342.CrossRefGoogle Scholar
  42. 42.
    Hohenberg, P. and Kohn, W., Inhomogeneous electron gas, Phys. Rev., 1964, vol. 136, pp. B864–B871.CrossRefGoogle Scholar
  43. 43.
    Kresse, G. and Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 1999, vol. 59, pp. 1758–1775.CrossRefGoogle Scholar
  44. 44.
    Blochl, P.E., Projector augmented-wave method, Phys. Rev. B, 1994, vol. 50, art. 17953.CrossRefGoogle Scholar
  45. 45.
    Perdew, J.P., Burke, K., and Ernzerhof, M., Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, vol. 77, pp. 3865–3868.CrossRefGoogle Scholar
  46. 46.
    Kresse, G. and Furthmuller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 1996, vol. 6, pp. 15–50.CrossRefGoogle Scholar
  47. 47.
    Kresse, G. and Furthmuller, J., Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set, Phys. Rev. B., 1996, vol. 54, pp. 11169–11186.CrossRefGoogle Scholar
  48. 48.
    Kresse, G. and Hafner, J., Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements, J. Phys. Condens. Matter, 1994, vol. 6, art. 8245.CrossRefGoogle Scholar
  49. 49.
    Kresse, G. and Hafner, J., Ab initio molecular dynamics for open-shell transition metals, Phys. Rev. B, 1993, vol. 48, pp. 13115–13118.CrossRefGoogle Scholar
  50. 50.
    Monkhorst, H.J. and Pack, J.D., Special points for Brillouin-zone integration, Phys. Rev. B, 1976, vol. 13, pp. 5188–5192.CrossRefGoogle Scholar
  51. 51.
    Wang, L.-L. and Johnson, D.D., Removing critical errors for DFT applications to transition-metal nanoclusters: Correct ground-state structures of Ru clusters, J. Phys. Chem. B., 2005, vol. 109, pp. 23113–23117.CrossRefGoogle Scholar
  52. 52.
    Birch, F., Elasticity and constitution of the Earth’s interior, J. Geophys. Res., 1952, vol. 57, pp. 227–234.CrossRefGoogle Scholar
  53. 53.
    Simunek, A. and Vackar, J., Hardness of covalent and ionic crystals: First-principle calculations, Phys. Rev. Lett, 2006, vol. 96, art. 85501.CrossRefGoogle Scholar
  54. 54.
    Wang, Y., Panzik, J.E., Kiefer, B., et al., Crystal structure of graphite under room-temperature compression and decompression, Sci. Rep., 2012, vol. 2, art. 520.CrossRefGoogle Scholar
  55. 55.
    Heinz, D.L., Thermal pressure in the laser-heated diamond anvil cell, Geophys. Res. Lett., 1990, vol. 17, pp. 1161–1164.CrossRefGoogle Scholar
  56. 56.
    Goncharov, A.F., Prakapenka, V.B., Struzhkin, V.V., et al., X-ray diffraction in the pulsed laser heated diamond anvil cell, Rev. Sci. Instrum., 2010, vol. 81, art. 113902.CrossRefGoogle Scholar
  57. 57.
    Andrault, D., Fiquet, G., Itie, J.P., et al., Thermal pressure in the laser-heated diamond-anvil cell: An X-ray diffraction study, Eur. J. Mineral., 1998, vol. 10, pp. 931–940.CrossRefGoogle Scholar
  58. 58.
    Al-Khatatbeh, Y. and Lee, KKM., From superhard to hard: A review of transition metal dioxides TiO2, ZrO2, and HfO2 hardness, J. Superhard Mater., 2014, vol. 36, pp. 231–245.CrossRefGoogle Scholar
  59. 59.
    Ding, Y., Chen, M., and Wu, W., Mechanical properties, hardness and electronic structures of new post-contunnite phase (Fe2P-type) of TiO2, Phys. B. Condens. Matter., 2014, vol. 433, pp. 48–54.CrossRefGoogle Scholar
  60. 60.
    Lyakhov, A.O. and Oganov, A.R., Evolutionary of search for superhard materials: Methodology and applications to forms of carbon and TiO2. Phys. Rev. B, 2011, vol. 84, art. 92103.CrossRefGoogle Scholar
  61. 61.
    Simunek, A., How to estimate hardness of crystals on a pocket calculator, Phys. Rev. B., 2007, vol. 75, art. 172108.CrossRefGoogle Scholar
  62. 62.
    Momma, K. and Izumi, F., VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., 2011, vol. 44, pp. 1272–1276.CrossRefGoogle Scholar
  63. 63.
    Haines, J., Leger, J.M., and Atouf, A., Crystal structure and equation of state of cotunnite-type zirconia, J. Am.Ceram. Soc., 1995, vol. 78, pp. 445–448.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • Yahya Al-Khatatbeh
    • 1
    Email author
  • Khaldoun Tarawneh
    • 1
  • Hussein Al-Taani
    • 2
  • Kanani K. M. Lee
    • 3
  1. 1.Department of Basic SciencesPrincess Sumaya University for TechnologyAmmanJordan
  2. 2.School of Basic Sciences and HumanitiesGerman Jordanian UniversityAmmanJordan
  3. 3.Department of Geology and GeophysicsYale UniversityNew Haven, ConnecticutUSA

Personalised recommendations