Advertisement

Journal of Superhard Materials

, Volume 40, Issue 6, pp 365–373 | Cite as

The Influence of in situ Formed TiB2–VB2 Borides on the Structure and Properties of Hot-Pressed B4C–(TiH2–VC) Ceramic System

  • O. N. KaidashEmail author
  • V. Z. Turkevich
  • V. V. Ivzhenko
  • P. P. Itsenko
  • V. N. Tkach
Production, Structure, Properties
  • 6 Downloads

Abstract

A method of the reaction hot pressing was used to produce composites from the B4C–(5–15%)(TiH2–VC) system, established the peculiarities of their structures and measured physico-mechanical parameters. The dense dispersion-hardened materials having a high bending strength (Rbm = 420–580 MPa) and increased fracture toughness (KIc = 4.1–4.8 MPa·m1/2) on retention of the HKN = 19–20 GPa are promising for the use in the conditions of the severe abrasive wear.

Keywords

composite material B4TiH2 VC ultimate bending strength Knoop hardness fracture toughness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kisly, P.S., Kuzenkova, M.A., Bodnaruk, N.I., and Grabchuk, B.L., Boron carbide, Kiev: Naukova Dumka, 1988.Google Scholar
  2. 2.
    Thevenot, F., Boron carbide—a comprehensive review, J. Eur. Ceram. Soc., 1990, no. 6, pp. 205–225.CrossRefGoogle Scholar
  3. 3.
    Ordan’yan, S.S., On the regularities of the interaction in the B4C–MeIV–VIB2 system, Refractories, 1993, no. 5, pp. 15–17.Google Scholar
  4. 4.
    Zachariev, Z., New superhard ternary borides in composite, Materials metal, ceramic and polymeric composites for various uses, J. Cuppoletti (Ed.), Croatia: InTech, 2011, Ch. 3, pp. 61–78, (https://doi.org/www.intechopen.com).Google Scholar
  5. 5.
    Yamada, S., Hirao, K., Yamauchi, Y., and Kanzaki, S., High strength B4C–TiB2 composites fabricated by reaction hot-pressing, J. Eur. Ceramic Soc., 2003, vol. 23, no. 7, pp. 1123–1130.CrossRefGoogle Scholar
  6. 6.
    Zorzi, J. E., Perottoni, C. A., and Da Jornada J. A. H., Hardness and wear resistance of B4C ceramics prepared with several additives, Mater. Lett., 2005, vol. 59, no. 23, pp. 2932–2935.CrossRefGoogle Scholar
  7. 7.
    Yue, X., Zhao, S., Lü, P., et al., Synthesis and properties of hot-pressed B4C–TiB2 ceramic composite, Mater. Sci. Eng.: A., 2010, vol. 527, no. 27–28, pp. 7215–7219.CrossRefGoogle Scholar
  8. 8.
    Grigor’ev, O.N., Koval’chuk, V.V., Paporozhets, O.I., et al., Production and physico-mechanical properties of composites B4C–VB2, Powder Metallurgy, 2006, no. 1/2, pp. 59–72.Google Scholar
  9. 9.
    Yamada, S., Hirao, K., Yamauchi, Y., and Kanzaki, S., B4C–CrB2 composites with improved mechanical properties, J. Eur. Ceram. Soc., 2003, vol. 23, no. 3, pp. 561–565.CrossRefGoogle Scholar
  10. 10.
    Wenbo, H., Jiaxing, G., Ithong, G., and Jiliang, Y., Microstructure and properties of B4C–ZrB2 ceramic composites, Int. J. Eng. Innov. Techn. (IJEIT), 2013, vol. 3, no. 1, pp. 163–166.Google Scholar
  11. 11.
    Kim, H. W., Koh, Y.H., and Kim, H.E., Reaction sintering and mechanical properties of B4C with addition of ZrO2, J. Mater. Research., 2000, vol. 15, no. 11, pp. 2431–2436.CrossRefGoogle Scholar
  12. 12.
    Deng, J. and Sun, J., B4C/TiC/Mo ceramic composites, Ceram Int., 2009, vol. 35, no. 2, pp. 771–778.CrossRefGoogle Scholar
  13. 13.
    Deng, J., Zhou, J., Feng, Y., and Ding, Z., Microstructure and mechanical properties of hot–pressed B4C/tWTiC ceramic composites, Ceram Int., 2002, vol. 28, no. 4, pp. 425–430.CrossRefGoogle Scholar
  14. 14.
    Wen, G., Li, S. B., Zhang, B.S., and Guo, Z. X., Processing of in situ toughened B–W–C composites by reaction hot processing of B4C and WC, Scripta Mater., 2000, vol. 43, pp. 853–857.CrossRefGoogle Scholar
  15. 15.
    Gorelik, C.C., Rastorguev, L.I., and Skakov, Yu.A., X-ray and electron–optical analysis, Moscow: Metallurgy, 1983.Google Scholar
  16. 16.
    JCPDS–International Centre for Diffraction Data. PCPDFWIN, vol. 1.30, Newtown Square, PA, The Centre, 1997.Google Scholar
  17. 17.
    Anders, R. and Beauvy, M., Hot-pressing of boron carbide, Ceram. Int., 1983, vol. 10, no. 2, pp. 49–55.CrossRefGoogle Scholar
  18. 18.
    Kwei, G.H. and Morosin, B., Structure of the boron-rich boron carbide from neutron powder diffraction: implications for the nature of the inter-icosahedral chains, J. Phys. Chem., 1996, vol. 100, pp. 8031–8039.CrossRefGoogle Scholar
  19. 19.
    Hitoshi, T., Taroh, A., Tadashi, O., and Koji, K., Synthesis of TiB2–TiC composites by solid–state reaction between B4C and Ti powders, J. Ceram. Soc. Japan, 1999, vol. 107, no. 11, pp. 1041–1045.Google Scholar
  20. 20.
    Shamekh, M., Pugh, M., and Medraj, M., Understanding the reaction mechanism of in-situ synthesized (TiC–TiB2)/AZ91 magnesium matrix composites, Mater. Chem. Phys., 2012, vol. 135, pp. 193–205.CrossRefGoogle Scholar
  21. 21.
    Zhao, H. and Cheng, Y. B., Formation of TiB2–TiC composites by reactive sintering, Ceram. Int., 1999, vol. 25, no. 4, pp. 353–358.CrossRefGoogle Scholar
  22. 22.
    Shen, P., Zou, B., Jin, S., and Jiang, Q., Reaction mechanism in self-propagating high temperature synthesis of TiC–TB2/Al composites from an Al–Ti–B4C system, Mater. Sci. Eng. A, 2007, vol. 454–455, pp. 300–309.CrossRefGoogle Scholar
  23. 23.
    Niihara, K., Nakahira, A., and Hirai, T., The effect of stoichiometry on mechanical properties of boron carbide, J. Amer. Ceram. Soc., 1984, vol. 67, no. 1, pp. 13–14.Google Scholar
  24. 24.
    Makarenko, G.N. and Marek, E. V., Hard materials based on boron carbide, high-temperature carbides, Kiev: Naukova Dumka, 1975, pp. 165–169.Google Scholar
  25. 25.
    Samsonov, G.V., Serebryakova, T.I., and Neronov, V.A., Borides, Moscow: Atomizdat, 1975.Google Scholar
  26. 26.
    Ivzhenko, V.V., Kaidash, O.N., Sarnavskaya, G.F., et al., Special features of the formation of the structure and properties of materials from the B4C–TiH2 powder system in reaction sintering under pressure, J. Superhard Mater., 2011, vol. 33, no. 1, pp. 34–43.CrossRefGoogle Scholar
  27. 27.
    Goldschmidt, H.J., Interstitial alloys. Borides. Plenum, New York: Butterworths, London, 1967, Chapter 6, pp. 254–295.CrossRefGoogle Scholar
  28. 28.
    Chen, M.W., McCauley, J.W., LaSalvia, J.C., and Hemker, K.J., Microstructure characterization of commercial hot-pressed boron carbide ceramics, J. Amer. Ceram. Soc., 2005, vol. 88, no. 7, pp. 1935–1942.CrossRefGoogle Scholar
  29. 29.
    JCPDS–International Centre for Diffraction Data. PCPDF 35–0787. B4C.Google Scholar
  30. 30.
    Norton, J. T., Blumenthal, H., and Sindeband, S.J., Structure of diborides of titanium, zirconium, columbium, tantalum, and vanadium, Metall. Trans., 1949, vol. 185, pp. 749–751.Google Scholar
  31. 31.
    Qi, C.J., Jiang, Y.H., Liu, Y.Z., and Zhou, R., Elastic and electronic properties of XB2 (X = V, Nb, Ta, Cr, Mo, and W) with AlB 2 structure from first principles calculations, Ceram. Int., 2014, vol. 40, issue 4, pp. 5843–5851.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • O. N. Kaidash
    • 1
    Email author
  • V. Z. Turkevich
    • 1
  • V. V. Ivzhenko
    • 1
  • P. P. Itsenko
    • 1
  • V. N. Tkach
    • 1
  1. 1.Bakul Institute for Superhard MaterialsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations