Advertisement

Journal of Superhard Materials

, Volume 40, Issue 5, pp 335–347 | Cite as

On the Formation of Intercarbide and Interface Surfaces in WC–Co Cemented Carbides. Review

  • A. F. Lisovskii
  • I. A. GnatenkoEmail author
Production, Structure, Properties
  • 9 Downloads

Abstract

Based on the analysis of published studies, thermodynamic functions describing the processes of the formation of intercarbide and interface surfaces during the solid- and liquid-phase sintering of WC–Co cemented carbides. At present a certain progress in studies of the structure and composition of intercarbide WC/WC and interface WC/Co surfaces is attained, the technologies are developed that allow affecting the composition and structure of these surfaces. It is noted that the composition and structure of intercarbide and interface surfaces (Ti, W, Ta)C–WC–Co and (Ti, W, Nb)C–WC–Co of cemented carbides are not adequately investigated. The studies on the influence of the composition and structure of intercarbide and interface surfaces on physico-mechanical properties of cemented carbides and their operational characteristics remained urgent.

Keywords

cemented carbides contact and interface surfaces thermodynamics structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brookes Kenneth, J.A., World Directory and Handbook of Hardmetals and Hard Materials, United Kingdom: Int. Carbide Data, Metal Powder Industry, 1992.CrossRefGoogle Scholar
  2. 2.
    Tret’yakov, V.I., Fundamentals of metal science and technology of the production of sintered hard alloys, Moscow: Metallurgy, 1976.Google Scholar
  3. 3.
    Upadhyaya, G.S., Cemented Tungsten Carbides. Production, Properties, and Testing, Noyes Publications, USA, Westwood, New Jersey, 1988.Google Scholar
  4. 4.
    Azcona, I., Ordonez, A., Sanchez, J.M., and Castro, F., Hot isostatic pressing of ultrafine tungsten carbide–cobalt hardmetals, J. Mater. Sci., 2002, vol. 37, no. 19, pp. 4189–4195.CrossRefGoogle Scholar
  5. 5.
    Sivaprahasam, D., Chandrasekar, S.B., and Sundaresan, R., Microstructure and mechanical properties of nanocrystalline WC–12Co consolidated by sparkplasma sintering, Int. J. Refract. Met. Hard Mater., 2007, vol. 25, no. 2, pp. 144–152.CrossRefGoogle Scholar
  6. 6.
    Kim, H.C, Shon, I.J., Jeong, I.K., et al., Rapid sintering of ultra fine WC and WC–Co hard materials by high–frequency induction heated sintering and their mechanical properties, Metal Mater. Int., 2007, vol. 13, no. 1, pp. 39–45.CrossRefGoogle Scholar
  7. 7.
    Michalski, A. and Siemiaszko, D., Nanocrystalline cemented carbides sintered by the pulse plasma method, Int. J. Refract. Met. Hard Mater., 2007, vol. 25, no. 2, pp. 153–158.CrossRefGoogle Scholar
  8. 8.
    Wang, X., Fang, Z., and Sohn, H.Y., Nanocrystalline cemented tungsten carbide sintered by an ultra–high–pressure rapid hot consolidation process, Proc. of the 2007 Int. Conf. on Powder Metallurgy & Particulate Materials, Engquist, J., Ed., US, Denver, 2007, pp. 8–10.Google Scholar
  9. 9.
    Maystrenko, A.L., Formation of structure of composite diamond–containing materials in technological processes, Kyiv: Naukova Dumka, 2014.Google Scholar
  10. 10.
    Lisovsky A. F. and Bondarenko, N.A., The role of interphase and contact surfaces in the formations of structures and properties of diamond–(WC–Co) composites. A review, J. Superhard Mater., 2014, vol. 36, no. 3, pp. 145–155.CrossRefGoogle Scholar
  11. 11.
    Fry, P.R. and Garrett, G.G., Fatigue crack growth behavior of tungsten carbide–cobalt hardmetals, J. Mater. Sci., 1988, vol. 23, pp. 2325–2338.CrossRefGoogle Scholar
  12. 12.
    Schleinkofer, U., Sockel, H.G., Görting, K., and Heinrich, W., Fatigue of hard metals and cermets—new results and a better understanding, Int. J. Refract. Met. Hard Mater., 1997, vol. 15, no. 1–3, pp.103–112.Google Scholar
  13. 13.
    Gurland, J., The fracture strength of sintered WC–Co alloys in relation to composition and particle spacing, Trans. Met. Soc. AIME, 1963, vol. 227, no. 10, pp. 1146–1150.Google Scholar
  14. 14.
    Lay, S., Vicens, J., and Osterstock, F., High temperature creep of WC–Co alloys, J. Mater. Sci., 1987, vol. 22, no. 4, pp. 1310–1322.CrossRefGoogle Scholar
  15. 15.
    Sigl, L.S. and Exner, H.E., Experimental study of the mechanics of fracture in WC–Co alloys, Metall. Trans. A, 1987, no. 7–12, pp. 1299–1308.Google Scholar
  16. 16.
    Schmid, H.G., Mari, D., Benoit, W., and Bonjour, C., The mechanical behavior of cemented carbides at high temperatures, Mater. Sci. Eng. A, 1988, vol. 106, no. 1–2, pp. 3453–351.Google Scholar
  17. 17.
    Lisovsky, A.F., Thermodynamics of the formation of composite material structures, J. Superhard Mater., 2015, vol. 37, no. 6, pp. 363–374.CrossRefGoogle Scholar
  18. 18.
    Gibbs, J. W., The collected works, N.Y.: Longmans, Green and Co, 1928.Google Scholar
  19. 19.
    Lisovsky, A.F., Thermodynamics of processes of consolidation of an assembly of dispersed particles and deconsolidation of a polycrystalline body, Sci. Sintering, 2002, vol. 34, pp. 135–142.CrossRefGoogle Scholar
  20. 20.
    Missol, W., Przyczyny wyciekania olowlu podczas spiekania lozyskowych br¹zow olowiowych, Praci Instityty Hutnizse, 1965, vol. 17, no. 5, pp. 271–285.Google Scholar
  21. 21.
    Warren, R., Determination of the interfacial energy in two–phase systems by measurement of interphase Contact, Metallography, 1976, vol. 9, pp. 183–191.CrossRefGoogle Scholar
  22. 22.
    Gnatenko, I.O., Improvement of a method of the appraisal of state of carbide skeleton of tungsten hard alloys and the estimation of the effect of technological factors on it. Manuscript. Institute for Superhard Materials, Kyiv, 2016.Google Scholar
  23. 23.
    Lisovsky, A. F., Deconsolidation of polycrystalline skeletons in sintered composite materials, Mater. Sci. Forum. Sintering Fundaments, 2009, vol. 624, pp. 43–56.CrossRefGoogle Scholar
  24. 24.
    Lisovsky, A.F., Thermodynamics of the particle consolidation in a three–phase system, J. Superhard Mater., 2007, vol. 29, no. 4, pp. 224–227.CrossRefGoogle Scholar
  25. 25.
    German, R M., Sintering theory and practice, New York: Wiley, 1996.Google Scholar
  26. 26.
    Lisovsky, A.F., Thermodynamics of sintering of composite materials with the liquid phase present, J. Superhard Mater., 2011, vol. 33, no. 3, pp. 166–172.CrossRefGoogle Scholar
  27. 27.
    Gurland, J., The measurement of grain contiguity in two–phase alloys, Trans. AIME, 1958, vol. 212, pp. 452–455.Google Scholar
  28. 28.
    Smith, C.S., Grain, phases and interfaces: An interpretation of microstructure, Trans. Am. Inst. Mining Met. Eng.,1948, vol. 175, pp. 15–51.Google Scholar
  29. 29.
    Lisovsky, A.F., Thermodynamic interpretation of a dihedral angler in composite materials, Sci. Sintering, 2004, vol. 36, no. 2, pp. 81–86.CrossRefGoogle Scholar
  30. 30.
    Fang, Z. Zak, Wang, Xu, Ryu Taegong, et al., Synthesis, sintering and mechanical properties of nanocrystalline cemented tungsten carbide. A review, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, pp. 288–299.CrossRefGoogle Scholar
  31. 31.
    Glezer, A.M., Amorphous and nanocrystalline structures: similarities, differences, mutual transition, Ros. Chem. J.,2002, vol. 46, no. 5, pp. 50–56.Google Scholar
  32. 32.
    Andrievsky, R. A. and Glezer, A.M., Dimensional effects in nanocrystalline materials, Physica Metallov and Metallo–vedenie, 1999, vol. 88, no. 1, pp. 50–73, 2000, vol. 89, no. 1, pp. 91–112.Google Scholar
  33. 33.
    Lisovsky, A.F., On the use of thermodynamics to study nanoparticles, J. Superhard Mater., 2007, vol. 29, no. 5, pp. 281–286.CrossRefGoogle Scholar
  34. 34.
    Andrievsky, R.A. and Ragulya, A.V., Nanostructured materials, Moscow: Academia, 2005.Google Scholar
  35. 35.
    Lisovsky, A.F., On the development of nanostructured WC–Co hard alloys, J. Superhard Mater., 2010, vol. 32, no. 6, pp. 389–395.CrossRefGoogle Scholar
  36. 36.
    Gryaznov, V.G., Karpelov, A.E., and Romanov, A.E., On the crystalline stability of dislocations in Microcrystals, Letters to JTF, 1989, vol. 15, no. 2, pp. 39–44.Google Scholar
  37. 37.
    Gryznov, V.G., Polonsky, I. A., and Trusov, L.I., Size effect of dislocation stability in nanocrystals, Phys.Rev. B., 1991, vol. 44, pp. 42–46.CrossRefGoogle Scholar
  38. 38.
    Lisovsky, A.F., Thermodynamics of the consolidation of nanoparticles and a macroparticle, Sci. Sintering, 2010, vol. 42, no. 1, pp.15–24.Google Scholar
  39. 39.
    Spriggs, G.E., History of fine grained hardmetal, Int. J. Refract. Metal Hard Mater., 1995, vol. 13, no. 5, pp. 241–251.CrossRefGoogle Scholar
  40. 40.
    Hojo, J., Oku, T., and Kato, A., Tungsten carbide powders produced by the vapor phase reaction of the WCl6–CH4–H2 system, J. Less–Common Metal., 1978, vol. 59, no. 1, pp. 85–95.CrossRefGoogle Scholar
  41. 41.
    Vul’f, Yu. V., Selected works on crystalophysics and crystallography, Moscow: Gostehizdat, 1952.Google Scholar
  42. 42.
    Semchenko, V.K., Surface phenomena in metals and alloys, Moscow: Gosteizdat, 1957.Google Scholar
  43. 43.
    Warren, R., Carbide grain shape in cemented carbide alloys of cubic refractory carbides, J. Inst. Metals, 1972, vol. 100, no. 6, pp. 176–181.Google Scholar
  44. 44.
    Naidich, Yu. V., Contact phenomena in metallic melts, Kiev: Naukova Dumka, 1972.Google Scholar
  45. 45.
    Lisovsky, A.F., On the application of Laplace pressure in the Science of Sintering, Sci. Sintering, 2010, vol. 42, pp. 357–362.CrossRefGoogle Scholar
  46. 46.
    Lisovsky, A.F., On the imbibition of metal melts by sintered carbides, Powder Met. Int., 1987, vol. 19, no. 5, pp. 18–21.Google Scholar
  47. 47.
    Gurland, J., Observation on the structure and sintering mechanism of cemented carbides, Trans. Met. Soc. AIME, 1959, vol. 215, no. 4, pp. 601–608.Google Scholar
  48. 48.
    Lay, S., Allibert, C.N., Christensen, M., and Wahnström, G., Morphology of WC grains in WC–Co alloys, Mater. Sci. Eng. A., 2008, vol. 486, pp. 253–261.CrossRefGoogle Scholar
  49. 49.
    Christensen, M., Wahnström, G., Lay, S., Alibert, C, H., Morphology of WC grains in WC–Co alloys: Theoretical determination of grain shape, Acta Materialia, 2007, vol. 55, pp. 1515–1521.CrossRefGoogle Scholar
  50. 50.
    Slabanja, M., Johansson, S.A.E., and Wahnström, G., Energetics and structure of interfaces in WC–Co alloys from first principles calculations, Proc. 17th Int. Plansee Seminar 2009, G. Kneringer, P. Rödhammer, P. Wilhartitz, Eds.,Wattens, Austria: Plansee AG, 2009, vol. 2, HM2/1–11.Google Scholar
  51. 51.
    Bondarenko, V.P., Yurchuk, N.A. Prokopiv, N.M., et al., Fundamentals of phenomenology of the formation of carbide skeleton in sintered hard alloys WC–Co, Rock–destruction and metal–working tools–techniques and technology of its manufacturing and applications: Collection of scientific works, Kyiv: V.N. Bakul ISM of the National Academy of Sciences of Ukraine, 2009, issue 12, pp. 375–381.Google Scholar
  52. 52.
    Minaev, Yu. A. and Zhukhovitsky, A.A., On the boundaries of the applicability of the hypothesis on the monomolecularity of the surface layer, Wettability and surface properties of melts and solid bodies, Kiev: Naukova Dumka, 1972, pp. 159–163.Google Scholar
  53. 53.
    Gal’ V.V., On the thickness of the surface layer in the phenomenon of a diffusion and hypotesis of the monomolecularity of the interfase boundary, Wettability and the surface properties of melts and solid bodies, Kiev, Naukova Dumka, 1972, pp. 246–247.Google Scholar
  54. 54.
    Shiqua Zhou, Wei Zhao, Weihao Xiong, and Hong Zhongguo., Thermodynamics of the formation of contiguity between ceramic grains and interface structures of Ti(C,N)–based cermets, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, pp. 740–746.CrossRefGoogle Scholar
  55. 55.
    Henjered, A., Hellsing, M., Andrén, H.–O., and Nordén H. Quantitative microanalysis of carbide/carbide interfaces in WC–Co–base cemented carbides, Mater. Sci. Technol.,1986, vol. 2, pp. 847–855.Google Scholar
  56. 56.
    Weidow, J. and Andrén, H.–O., Grain and phase boundary segregation in WC–Co with small V, Cr or Mn additions, Acta Mater., 2010, vol. 58, pp. 3888–3894.Google Scholar
  57. 57.
    Taniuchi, T., Okada, K., and Tanase, T., Sintering behavior of VC–doped micro–grained cemented carbide, Proc. 14th Int. Plansee Seminar, 1997, G. Kneringer, P. Rödhammer, P. Wilhartitz, Eds., Wattens, Austria: Plansee AG, 1997, vol. 2, pp. 644–657.Google Scholar
  58. 58.
    Östberg G., Buss K., Christensen M. et al., Effect of TaC on plastic deformation of WC–Co and Ti(C, N)–WC–Co, Int. J. Refract. Met. Hard Mater. 2006, vol. 24, pp. 145–154.CrossRefGoogle Scholar
  59. 59.
    Henjered, A., Hellsing, M., Andres, H. O., and Norden, H., The presence of cobalt at WC/WC interfaces, Sci. Hard Mater. Proc. Int. Conf., Rhodes, 23–28 Sept. 1984, Bristol: Boston, 1986, pp. 303–309.Google Scholar
  60. 60.
    Weindow, J. and Andren, H.–O., Grain and phase boundary segregation in WC–Co with TiC, ZrC, NbC or TaC additions, Int. J. Refract. Met. Hard Mater., 2011, vol. 29, no. 1, pp. 38–43.CrossRefGoogle Scholar
  61. 61.
    Weidow, J., Zackrisson, J., Jansson, B., and Andrén, H.–O., Characterization of WC–Co with cubic carbide additions, Int. J. Refract. Met. Hard Mater., 2011, vol. 29, no. 1, pp. 38–43.CrossRefGoogle Scholar
  62. 62.
    Lisovsky, A.F. and Tkachenko, N.V., On the use of the MMI–phenomenon for the formation of nanostructures in WC–Co cemented carbides,, Int. J. Refract. Met. Hard Mater., 1997, vol. 15, no. 4, pp. 227–235.CrossRefGoogle Scholar
  63. 63.
    Almond, E.A. and Roebuck, B., Very–fine–grained hardmetals, Eur. Res. Mater. Substit.: Proc. Final. Contr. Meet., Brussel, 9–11 Dec. 1986, London, New York, 1988, pp. 427–444.Google Scholar
  64. 64.
    Okada, K. and Osaka, A. Microstructural study on the grain growth inhibition of VC–doped WC–Co cemented carbides, Int. J. Refract. Met. Hard Mater., 2017, vol. 62, Part B, pp. 149–154.Google Scholar
  65. 65.
    Lisovsky, A.F., On the formation of a refractory skeleton in composite materials. A review, J. Superhard Mater., 2013, vol. 35, no. 2, pp. 65–76.CrossRefGoogle Scholar
  66. 66.
    Koval’sky, A.E. and Pivovarov, L.X., X–ray diffraction studies of the bonding phase of powder metallurgical alloys of tungsten carbide cobalt, Izvestia of USSR AS, OTN. Metallurgy and Fuel, 1959, no. 6, pp. 113–120.Google Scholar
  67. 67.
    Lisovsky, A.F. and Tkachenko, N.V., Substructure of sintered hard alloys WC–Co alloyed by transition metals according to the process technology with metal melts, Powder Metallurgy, 1997, no. 11–12, pp. 76–83.Google Scholar
  68. 68.
    Lisovsky, A. F. and Gracheva, T. E., Some special features of the mass transfer of the liquid phase in composite Materials based on tungsten carbides, J. Eng. Phys.Thermophys., 1987, vol. 53, no. 1, pp. 807–709.CrossRefGoogle Scholar
  69. 69.
    Bondarenko, V.P., Sintered hard alloys–high–performance tools and constructional materials, in 2 volumes, Progressive materials and technology, Kyiv: Akademperiodika, 2003, vol. 2, pp. 219–251.Google Scholar
  70. 70.
    Bondarenko, V.P. and Gnatenko, I.A., Prospects of the administration of the process of the formation of carbide skeleton in sintered hard alloys of the WC–Co system, Rock–Destruction and metalworking tools—technique and techno–logy of its manufacture and application: Collection of Scient. Papers, Kyiv: V.N. Bakul ISM of the National Academy of Sciences of Ukraine, 2011, issue 14, pp. 423–437.Google Scholar
  71. 71.
    Laptev, A.V., Special features of the formation of the structure and properties of WC–Co alloys at solid–phase Sintering. Evolution of the geometric structure, Powder Metallurgy, 2007, no. 9/10, pp. 3–13.Google Scholar
  72. 72.
    Kutazava Masuji, Mechanism of crystal growth and coalescence of tungsten carbide in the presence of cobalt liquid phase, Mater. Transact. JIM, 1990, vol. 31, no. 8, pp. 685–688.CrossRefGoogle Scholar
  73. 73.
    Laptev, A.V., Ponomarev, C.C., and Ochkas, L.F., Special feature of the structure and properties of 84% WC–16% Co Produced by hot pressing in solid and liquid phases, Powder Metallurgy, 2000, no. 11–12, pp. 103–116.Google Scholar
  74. 74.
    Lisovsky, A.F., MMI–phenomenon: scientific substantiation and practical application, J. Superhard Mater., 2001, vol. 23, no. 1, pp. 1–8.Google Scholar
  75. 75.
    Lisovsky, A.F., Some problems use of the phenomenon of metal melts imbibition of sintered composites, Powder Metall. Int., 1989, vol. 21, no. 6, pp. 7–9.Google Scholar
  76. 76.
    Lisovsky, A.F., The migration of metal melts in sintered composite materials, Int. J. Heat Mass Transfer., 1990, vol. 33, no. 8, pp. 1599–1603.CrossRefGoogle Scholar
  77. 77.
    Lisovsky, A.F., Mass transfer of liquid phase in sintered composite materials when interacting with metal melts, Int.J. Refract. Met. Hard Mater., 1989, vol. 8, no. 2, pp. 133–136.Google Scholar
  78. 78.
    Lisovsky, A.F. and Gracheva, T.E., Some peculiarities of structure formation of (Ti, W)C–WC–Co sintered carbides when interacting with metal melts, Int. J. Refract. Met. Hard Mater., 1992, vol. 11, pp. 83–87.Google Scholar
  79. 79.
    Lisovsky, A.F. and Tkachenko, N.V., Composition and structure of cemented carbides produced by MMT–process, Powder Metall. Int., 1991, vol. 23, no. 3, pp. 157–161.Google Scholar
  80. 80.
    Lisovsky, A.F., Gracheva, T.E., and Kulakovsky, V.N., Composition and properties of (Ti, W)C–WC–Co sintered Carbides alloyed by MMT–process, Int. J. Refract. Met. Hard. Mater., 1995, no. 13, pp. 379–383.CrossRefGoogle Scholar
  81. 81.
    Koval’sky, A.E. and Pivovarov, L.X., X–ray diffraction studies of the bonding phase of powder metallurgical alloys of tungsten carbide cobalt, Izvestia of USSR AS, OTN. Metallurgy and fuel, 1959, no. 6, pp. 113–120.Google Scholar
  82. 82.
    Manlang, L., Xiaoying, H., Shitian, D., et al., Diffraction–contrast analysis of WC–Co microstructure and deformation process, Int. J. Refract. Met. Hard Met., 1983, vol. 2, no. 3, pp. 129–132.Google Scholar
  83. 83.
    Sarin, V.K. and Johannesson, T., On the deformation of WC–Co cemented carbides, Metal Sci., 1975, vol. 9,pp. 472–476.Google Scholar
  84. 84.
    Lisovsky, A.F., Bondarenko, N.A., and Davidenko, S.A., Structure and properties of the diamond–WC–6Co composite doped by 1.5 wt % of CrSi2, J. Superhard Mater., 2016, vol. 38, no. 6, pp. 382–392.CrossRefGoogle Scholar
  85. 85.
    Vasel, C.H., Krawitz, A.D., Drake, E.F., and Kenik, E.A., Binder deformation in WC–(Co,Ni) cemented carbide Composites, Metallurg. Trans. A., 1985, vol. 16, pp. 2309–2317.CrossRefGoogle Scholar
  86. 86.
    Lisovsky, A.F., Tkachenko, N.V., and Kebko, V., Structure of a binding phase in re–alloyed WC–Co cemented Carbides, Int. J. Refract. Met. Hard Mater., 1991, vol. 10, no. 1, pp. 33–36.CrossRefGoogle Scholar
  87. 87.
    Lisovsky, A.F. Some speculations on an increase of WC–Co cemented carbide service life under dynamic loads, Int. J. Refract. Met. Hard Mater., 2003, vol. 21, pp. 63–67.CrossRefGoogle Scholar
  88. 88.
    Lebedev, A.A. and Chechin, E.V., On the choice of the working stresses at the calculation of constructions according to criterion of statistic strength, Problems of Strength, 1980, no. 4, pp. 32–34.Google Scholar
  89. 89.
    Toth, R.E., Smid, I., Sherman, A., et al., Tough–coated hard powders for hardmetals of novel properties, Proc. 15th Int. Plansee Seminar, Kneringer, G., Rödhammer, P., Wildner, H., Eds., Reutte: Plansee Holding AG, 2001, vol. 2, pp. 306–325.Google Scholar
  90. 90.
    Bondarenko, N.A., Zhukovsky, F.N., and Mechnik, V.A., The fundamentals of the generation of diamond–containing composite materials for rock–destruction tools, Kyiv: V.N. Bakul ISM of National Academy of Sciences, 2008.Google Scholar
  91. 91.
    Lisovsky, A.F., Formation of mesostructure in WC–Co cemented carbides. A review, Sci. Sintering, 2011, vol. 43, no. 2, pp. 161–173.CrossRefGoogle Scholar
  92. 92.
    Lisovsky, A.F., Thermodynamics of a new phase formation in a composite material, J. Superhard Mater. 2016, vol. 38, no. 4, pp. 230–234.Google Scholar
  93. 93.
    Lisovsky, A.F. and Bondarenko, N.A., Thermodynamic study of the doping of the diamond–WC–Co composition with silicides of transition metals, J. Superhard Mater., 2012, vol. 34, no. 4, pp. 239–242.CrossRefGoogle Scholar
  94. 94.
    Bondarenko, N.A. and Lisovsky, A. F., On the mechanism of the formation of the structure of interphase surface of the composition of diamond–WC–Co, Rock–Destruction and metalworking tools—technique and its manufacture and application: Collection of Scient. Papers, Kyiv: V.N. Bakul ISM of the National Academy of Sciences of Ukraine, 2011, issue 14, pp. 423–437.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Bakul Institute for Superhard MaterialsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations