Advertisement

Journal of Water Chemistry and Technology

, Volume 40, Issue 6, pp 370–378 | Cite as

Optimization of Pb(II) Biosorption with Date Palm (Phoenix Dactylifera L.) Seeds Using Response Surface Methodology

  • S. Çetintaş
  • D. Bingöl
Biological Methods of Water Treatment
  • 11 Downloads

Abstract

Date palm seeds (Phoenix dactylifera L.) were investigated as a biosorbent for removal of Pb(II) ions, which has a toxic effect on the environment. A batch sorption process was applied. Optimization of Pb(II) biosorption ontodate palm seedswas successfully carried out using response surface methodology. The effects of process variables, such as pH, initial Pb(II) concentration and biosorbent mass, on the adsorbed amount of Pb(II) were investigated using Box-Behnken design. The fitted results were found to be in good agreement with the results obtained by performing the experiments. The second-order response function showed that pH and initial Pb(II) concentration had positive effects, while biosorbent mass showed a negative effect. Initial Pb(II) concentration was the most significant factors that affected the removal of Pb(II) under the studied conditions. The maximum uptake of Pb(II) predicted by optimization plots was 24.07 mg/g at pH 5 initial Pb(II) concentration 100 mg/L and biosorbent mass 0.100 g.

Keywords

biosorption Box-Behnken design date palm (Phoenix dactylifera L.) seeds Pb(II). 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    United Nations Environment Programme (UNEP) Chemicals Branch DTIE, Final review of scientific information on lead, Version of December, 2010, pp. 1–215.Google Scholar
  2. 2.
    Banat, F., Al-Asheh, S., and Al-Makhadmeh, L., Proc. Biochem., 2003, vol. 39, pp. 193–202.CrossRefGoogle Scholar
  3. 3.
    Amira, E.A., Guido, F., Behija, S.E., et al. Food Chem., 2011, vol. 127, pp. 1744–1754.CrossRefGoogle Scholar
  4. 4.
    Baliga, M.S., Baliga, B.R.V., Kandathil, S.M., et al., Food Res. Int., 2011, vol. 44, pp. 1812–1822.CrossRefGoogle Scholar
  5. 5.
    Besbes, S., Blecker, C., Deroanne, C., et al., Food Chem., 2004, vol. 84, pp. 577–584.CrossRefGoogle Scholar
  6. 6.
    Ofomaja, A.E. and Ho, Y.S., Dyes Pigments, 2007, vol. 74, pp. 60–66.CrossRefGoogle Scholar
  7. 7.
    Ofomaja, A.E., J. Environ. Manage, 2010, vol. 9, pp. 1491–1499.CrossRefGoogle Scholar
  8. 8.
    Ho, Y.S. and Ofomaja, A.E., J. Hazard Mater., 2006, B137, pp. 1796–1802.CrossRefGoogle Scholar
  9. 9.
    Ho, Y.S. and Ofomaja, A.E., J. Hazard Mater., 2006, B129, pp. 137–142.CrossRefGoogle Scholar
  10. 10.
    Ho, Y.S. and Ofomaja, A.E., Proc. Biochem., 2005, vol. 40, pp. 3455–3461.CrossRefGoogle Scholar
  11. 11.
    Ho, Y.S. and Ofomaja, A.E., J. Hazard Mater., 2005, B120, pp. 157–162.CrossRefGoogle Scholar
  12. 12.
    Ofomaja, A.E., Biochem Eng J., 2008, vol. 40, pp. 8–18.CrossRefGoogle Scholar
  13. 13.
    Ofomaja, A.E., Chem Eng. J., 2007, vol. 126, pp. 35–43.CrossRefGoogle Scholar
  14. 14.
    Riahi, K., Thayer, B.B., Mammou, A.B., et al., J. Hazard Mater., 2009, vol. 170, pp. 511–519.CrossRefGoogle Scholar
  15. 15.
    Oladoja, N.A. and Akinlabi, A.K., Ind. and Eng. Chem. Res., 2009, vol. 48, pp. 6188–6196.CrossRefGoogle Scholar
  16. 16.
    Ahmed, L.A.A., Eng. and Technol. J., 2010, vol. 28, no. 1, pp. 119–125.Google Scholar
  17. 17.
    Al-Ghouti, M.A., Li J.L., Salamh, Y., et al., J. Hazard Mater., 2010, vol. 176, no.1/3, pp. 510–520.CrossRefGoogle Scholar
  18. 18.
    Saad, E.M., Mansour, R.A., El-Asmy, A., and El-Shahawi, M.S., Talanta, 2008, vol. 76, pp. 1041–1046.CrossRefGoogle Scholar
  19. 19.
    Bingöl, D., Inal, M., and Çetintaş, S., Ind. and Eng. Chem. Res., 2013, vol. 52, no. 12, pp. 4429–4435.CrossRefGoogle Scholar
  20. 20.
    Jirekar, D.B., Pathan, A.A., and Farooqui, M., Orient. J. Chem., 2014, vol. 30, no. 3, pp. 1263–1269.CrossRefGoogle Scholar
  21. 21.
    Yang, S., Wu, Y., Aierken, A., et al., J. Taiwan Inst. Chem. Eng., 2015, https://doi.org/10.1016/j.jtice.2015.07.007.Google Scholar
  22. 22.
    Somasekhara Reddy, M.C. and Nirmala, V., Arabian J. Chem., 2013, https://doi.org/10.1016/j.arabjc.2013.09.002.Google Scholar
  23. 23.
    Samadi, N., Hasanzadeh, R., Rasad, M., J. Appl. Polym. Sci., 2015, vol. 132, pp. 41642–41655.Google Scholar
  24. 24.
    Kabbashi, N.A., Atieh, M.A., Al-Mamun, A., et al., J. Environ. Sci., 2009, vol. 21, pp. 539–544.CrossRefGoogle Scholar
  25. 25.
    Karaoglu, M.H., Ugurlu, M., Chem. Eng. J., 2010, vol. 159, pp. 98–106.CrossRefGoogle Scholar
  26. 26.
    Montgomery, D.C., Design and Analysis of Experiments, 7th ed., New York: John Wiley & Sons Inc., 2008.Google Scholar
  27. 27.
    Ray, L., Paul, S., Bera, D., and Chattopadhyay, P., J. Hazard Sub. Res., 2005, vol. 5, no. 1, pp. 1–21.Google Scholar
  28. 28.
    Pavan, F.A., Mazzocato Ana, C., Jacques Rosángela, A., and Dias Silvio, L.P., Biochem. Eng. J., 2008, vol. 40, pp. 357–362.CrossRefGoogle Scholar
  29. 29.
    Zulkali, M.M.D., Ahmad, A.L., and Norulakmal, N.H., Biores. Technol., 2006, vol. 97, pp. 21–25.CrossRefGoogle Scholar
  30. 30.
    Bingöl, D., Hercan, M., Elevli, S., and Kiliç, E., Biores. Technol., 2012, vol. 112, pp. 111–115.CrossRefGoogle Scholar
  31. 31.
    Han, R., Li, H., Li Y., et al., J. Hazard Mater., 2006, vol. 137, pp. 1569–1576.CrossRefGoogle Scholar
  32. 32.
    Zein, R., Suhaili, R., Earnestly, F., and Indrawati, E.M., J. Hazard Mater., 2010, vol. 181, pp. 52–56.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • S. Çetintaş
    • 1
  • D. Bingöl
    • 1
  1. 1.Department of ChemistryKocaeli UniversityİzmitTurkey

Personalised recommendations