Advertisement

Effect of the Density of Electron Beam Energy on the Structure and Mechanical Characteristics of Surface Layers of Hypoeutectic Silumin

  • D. V. ZagulyaevEmail author
  • Yu. F. Ivanov
  • A. M. Glezer
  • V. E. Gromov
  • S. V. Konovalov
Article
  • 5 Downloads

Abstract

The structural phase states and mechanical properties of hypoeutectic silumin subjected to electron beam treatment with energy density of 10–35 J cm−2 are studied according to modern physical materials science. Treating silumin with an electron beam that has an energy density of 25 J cm−2 leads to the formation of a cellular structure in a layer that is up to 40 μm thick. The increase in the hardness of the surface layer of silumin is apparently due to the formation of a high-speed cellular crystallization structure of submicron size with nanoscale layers of the second phase distributed along the cell boundaries.

Notes

ACKNOWLEDGMENTS

We are grateful to the staff of the Institute of High Current Electronics (Tomsk Scientific Center, Siberian Branch, Russian Academy of Sciences), especially A.D. Teresov, O.S. Tolkachev, and V.V. Shlyarov for their active participation in our experiments.

FUNDING

This work was supported by the RF Ministry of Education and Science, project nos. 3.1283.2017/4.6 and 2017/113 (2097).

REFERENCES

  1. 1.
    Permyakova, I.E., Bull. Russ. Acad. Sci.: Phys., 2018, vol. 78, no. 9, p. 1086.CrossRefGoogle Scholar
  2. 2.
    Andriyakhin, V.M. and Fishkis, M.M., Lazery i perspektivy ikh primeneniya v avtomobilestroenii (Lasers and Prospects for Their Application in Automotive Engineering), Moscow: NIIAvtoprom, 1980.Google Scholar
  3. 3.
    Belov, A.B., Bytsenko, O.A., Krainikov, A.V., et al., Sil’notochnye impul’snye elektronnye puchki dlya aviatsionnogo dvigatelestroeniya (High-Current Pulsed Electron Beams for Aircraft Engine Building), Moscow: Dipak, 2012.Google Scholar
  4. 4.
    Wei, D., Wang, H., Wang, R., and Cui, H., Vacuum, 2018, vol. 149, p. 118.ADSCrossRefGoogle Scholar
  5. 5.
    Zagulyaev, D., Konovalov, S., Gromov, G., et al., Mater. Lett., 2018, vol. 229, p. 377.CrossRefGoogle Scholar
  6. 6.
    Zhao, Li, Wang, S., Jin, Y., and Chen, Y., Aerospace Sci. Technol., 2018, vols. 82–83, p. 61.CrossRefGoogle Scholar
  7. 7.
    Kim, J., Lee, W.J., and Park, J.W., J. Alloys Compd., 2016, vol. 679, p. 138.CrossRefGoogle Scholar
  8. 8.
    Kadyrzhanov, K.K., Komarov, F.F., Pogrebnyak, A.D., et al., Ionno-luchevaya i ionno-plazmennaya modifikatsiya materialov (Ion-Beam and Ion-Plasma Modification of Materials), Moscow: Mosk. Gos. Univ., 2005.Google Scholar
  9. 9.
    Anishchik, V.M. and Uglov, V.V., Modifikatsiya instrumental’nykh materialov ionnymi i plazmennymi puchkami (Modification of Tool Materials by Ion and Plasma Beams), Minsk: Beloruss. Gos. Univ., 2003.Google Scholar
  10. 10.
    Tyurin, Yu.N. and Zhadkevich, M.L., Plazmennye uprochnyayushchie tekhnologii (Plasma Hardening Technologies), Kyiv: Naukova Dumka, 2008.Google Scholar
  11. 11.
    Uglov, V.V., Cherenda, N.N., Anishchik, V.M., et al., Modifikatsiya materialov kompressionnymi plazmennymi potokami (Modification of Materials by Compression Plasma Fluxes), Minsk: Beloruss. Gos. Univ., 2013.Google Scholar
  12. 12.
    Yakushin, V.L., Russ. Metall., 2005, vol. 2005, no. 2, p. 104.Google Scholar
  13. 13.
    Kurzina, I.A., Kozlov, E.V., Sharkeev, Yu.P., et al., Nanokristallicheskie intermetallidnye i nitridnye struktury, formiruyushchiesya pri ionno-plazmennom vozdeistvii (Nanocrystalline Intermetallic and Nitride Structures Forming under Ion-Plasma Treatment), Tomsk: NTL, 2008.Google Scholar
  14. 14.
    Budilov, V.V., Ramazanov, K.N., and Vafin, R.K., Met. Sci. Heat Treat., 2011, vol. 53, nos. 7–8, p. 347.ADSCrossRefGoogle Scholar
  15. 15.
    Ghyngazov, S.A., Vasil’ev, I.P., Surzhikov, A.P., Frangulyan, T.S., and Chernyavskii, A.V., Tech. Phys., 2015, vol. 60, no. 1, p. 128.CrossRefGoogle Scholar
  16. 16.
    Tao, X., Yao, Z., Zhang, S., et al., Surf. Coat. Technol., 2018, vol. 337, p. 418.CrossRefGoogle Scholar
  17. 17.
    Rubino, F., Scherillo, F., Franchitti, S., et al., J. Manuf. Processes, 2019, vol. 37, p. 392.CrossRefGoogle Scholar
  18. 18.
    Gal’chenko, N.K., Belyuk, S.I., Kolesnikova, K.A., et al., Fiz. Mezomekh., 2005, no. 8, p. 133.Google Scholar
  19. 19.
    Makhloufe, M.M. and Guthy, H.V., J. Light Met., 2001, vol. 1, no. 4, p. 199.CrossRefGoogle Scholar
  20. 20.
    Páramo V., Colás R., Velasco, E., and Valtierra, S., J. Mater. Eng. Perform., 2000, vol. 9, no. 6, p. 616.CrossRefGoogle Scholar
  21. 21.
    Belov, N.A., Fazovyi sostav promyshlennykh i perspektivnykh alyuminievykh splavov (Phase Composition of Commercial and Emerging Aluminum Alloys), Moscow: MISiS, 2010.Google Scholar
  22. 22.
    Ivanov, Yu.F. and Koval’, N.N., in Struktura i svoistva perspektivnykh metallicheskikh materialov (Structure and Properties of Emerging Metallic Materials), Tomsk: NTL, 2007, p. 345.Google Scholar
  23. 23.
    GOST (State Standard) 9450-76: Measurements Microhardness by Diamond Instruments Indentation, 1993.Google Scholar
  24. 24.
    Glazov, V.M. and Vigdorovich, V.N., Mikrotverdost’ metallov (Microhardness of Metals), Moscow: Metallurgiya, 1969.Google Scholar
  25. 25.
    Ivanov, Y.F., Koval, N.N., Vlasov, V.I., et al., High Temp. Mater. Processes, 2013, vol. 17, no. 4, p. 241.Google Scholar
  26. 26.
    Ivanov, Y.F., Krysina, O.V., Rygina, M., et al., High Temp. Mater. Processes, 2014, vol. 18, no. 4, p. 311.Google Scholar
  27. 27.
    Gromov, V.E., Ivanov, Yu.F., Glezer, A.M., Kono-valov, S.V., and Alsaraeva, K.V., Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, no. 9, p. 1169.CrossRefGoogle Scholar
  28. 28.
    Gromov, V.E., Konovalov, S.V., Aksenova, K.V., and Kobzareva, T.Yu., Evolyutsiya struktury i svoistv legkikh splavov pri energeticheskikh vozdeistviyakh (Evolution of Structure and Properties of Light Alloys Induced by Energy Depositions), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2016.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • D. V. Zagulyaev
    • 1
    Email author
  • Yu. F. Ivanov
    • 2
  • A. M. Glezer
    • 3
  • V. E. Gromov
    • 1
  • S. V. Konovalov
    • 4
  1. 1.Siberian State Industrial University (SibSIU)NovokuznetskRussia
  2. 2.Institute of High Current Electronics, Tomsk Scientific Center, Siberian Branch, Russian Academy of SciencesTomskRussia
  3. 3.National University of Science and Technology (MISiS)MoscowRussia
  4. 4.Samara UniversitySamaraRussia

Personalised recommendations