Phase Composition and Magnetic Properties of Fe2O3–FeO–Gd2O3 Powders after High-Energy Ball Milling and Thermal Treatment

  • S. V. SalikhovEmail author
  • S. K. Toleukhanova
  • I. G. Bordyuzhin
  • A. G. Savchenko


Comprehensive studies of powders with a nominal composition of 90% [43% Fe2O3–57% FeO]–10% Gd2O3 are performed via scanning electron microscopy, microscopic X-ray spectral and phase analysis, differential scanning calorimetry, and measuring hysteresis properties. It is shown that the main phases in the powders after high-energy ball milling are magnetite (Fe3O4) and an amorphous phase; in addition, the powders contain about 2 vol % wustite (FeO) and less than 1 vol % orthoferrite (GdFeO3). Trends of changes in the phase composition, structure, and hysteresis properties of the annealed powders are identified.



  1. 1.
    Crozals, G.D., Bonnet, R., Farre, C., and Chaix, C., Nano Today, 2016, vol. 11, p. 435.CrossRefGoogle Scholar
  2. 2.
    Périgo, E.A., Hemery, G., Sandre, O., et al., Appl. Phys. Rev., 2015, vol. 2, p. 041302.ADSCrossRefGoogle Scholar
  3. 3.
    Dadfar, S.M., Roemhild, K., Drude, N.I., et al., Adv. Drug Delivery Rev., 2019, vol. 11, p. 1.Google Scholar
  4. 4.
    Nikitin, A., Fedorova, M., Naumenko, V., et al., J. Magn. Magn. Mater., 2017, vol. 441, p. 6.ADSCrossRefGoogle Scholar
  5. 5.
    Gubin, S.P., Yurkov, G.Yu., Koksharov, Yu.A., and Khomutov, G.B., Russ. Chem. Rev., 2005, vol. 74, no. 6, p. 489.ADSCrossRefGoogle Scholar
  6. 6.
    Na, H.B. and Hyeon, T., J. Mater. Chem., 2009, vol. 19, p. 6267.CrossRefGoogle Scholar
  7. 7.
    Fedorenko, S., Stepanov, A., Zairov, R., et al., Colloids Surf. A, 2018, vol. 559, p. 60.CrossRefGoogle Scholar
  8. 8.
    Li, Z., Yi, P.W., Sun, Q., Adv. Funct. Mater., 2012, vol. 22, p. 2387.CrossRefGoogle Scholar
  9. 9.
    Aime, S., Botta, M., and Terreno, E., Adv. Inorg. Chem., 2005, vol. 57, p. 173.CrossRefGoogle Scholar
  10. 10.
    Marckmann, P., Skov, L., Rossen, K., et al., J. Am. Soc. Nephrol., 2006, vol. 17, p. 2359.CrossRefGoogle Scholar
  11. 11.
    Kuo, P.H., Kanal, E., Abu-Alfa, A.K., et al., Radiology, 2007, vol. 242, p. 647.CrossRefGoogle Scholar
  12. 12.
    Bulte, J.W.M. and Kraitchman, D.L., NMR Biomed., 2004, vol. 17, p. 484.CrossRefGoogle Scholar
  13. 13.
    Shin, T., Choi, J., Yun, S., et al., J. Am. Chem. Soc., 2014, vol. 8, p. 3393.Google Scholar
  14. 14.
    Keasberry, N.A., Bañobre-López, M., Wood, C., et al., Nanoscale, 2015, vol. 7, p. 16119.ADSCrossRefGoogle Scholar
  15. 15.
    Domingues, E.M., Tsipis, E.V., Yaremchenko, A.A., et al., J. Eur. Ceram. Soc., 2013, vol. 33, p. 1307.CrossRefGoogle Scholar
  16. 16.
    Xiao, N., Gu, W., Wang, H., et al., J. Colloid Interface Sci., 2014, vol. 417, p. 159.ADSCrossRefGoogle Scholar
  17. 17.
    Shelekhov, E.V. and Sviridova, T.A., Met. Sci. Heat Treat., 2000, vol. 42, no. 8, p. 309.ADSCrossRefGoogle Scholar
  18. 18.
    Shakh-Nazaryan, N., Izuchenie vliyaniya mekhanicheskoi aktivatsii pri tverdofaznom sinteze keramiki. Uchebno-metodicheskoe posobie (Studying the Effect of Mechanical Activation in Solid-Phase Synthesis of Ceramics. Study Guide), Rostov-on-Don: Yuzhn. Fed. Univ., 2009, p. 10.Google Scholar
  19. 19.
    Kubaschewski, O., Iron Binary Phase Diagrams, Springer, 1982, p. 79.Google Scholar
  20. 20.
    Teja, A.S. and Koh, P.Y., Prog. Cryst. Growth Charact. Mater., 2009, vol. 55, p. 22.CrossRefGoogle Scholar
  21. 21.
    Arévalo, P., Isasi, J., Caballero, A.C., et al., Ceram. Int., 2017, vol. 43, p. 10333.CrossRefGoogle Scholar
  22. 22.
    Krinchik, G.S., Fizika magnitnykh yavlenii (The Physics of Magnetic Phenomena), Moscow: Mosk. Gos. Univ., 1976.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • S. V. Salikhov
    • 1
    Email author
  • S. K. Toleukhanova
    • 1
  • I. G. Bordyuzhin
    • 1
  • A. G. Savchenko
    • 1
  1. 1.National University of Science and Technology (MISiS)MoscowRussia

Personalised recommendations