Advertisement

Curvature and Torsion of the Crystal Lattice in Deformed Polycrystalline Alloys

  • N. A. KonevaEmail author
  • L. I. Trishkina
  • T. V. Cherkasova
Article
  • 11 Downloads

Abstract

The local curvature and torsion (χ) of the crystal lattice formed during the deformation of polycrystalline FCC solid solutions is studied via transmission electron microscopy (TEM). Polycrystalline alloys of Cu and Al (Al contents of 0.5 and 14 at %) with mean grain sizes of 10 to 240 µm are considered. It is established that the sources of curvature and torsion are boundary intersections, grain boundaries, and misoriented dislocation and disclination substructures that form during deformation of the alloys. The greatest curvature and torsion of the crystal lattice are due to grain boundaries and boundary intersections. The effect of grain size has on the value of χ is determined.

Notes

FUNDING

This work was supported by the state assignment to conduct scientific research, project no. 3.8320.2017/BCh.

REFERENCES

  1. 1.
    Shtremel’, M.A., Prochnost’ splavov. Defekty reshetki (Strength of Alloys. Lattice Defects), Moscow: Metallurgiya, 1982.Google Scholar
  2. 2.
    Koneva, N.A., Trishkina, L.I., Lychagin, D.V., and Kozlov, E.V., Trudy Mezhdunarodnoi konferentsii “Novye metody v fizike i mekhanike deformiruemogo tverdogo tela” (Proc. Int. Conf. “New Methods in Physics and Mechanics of Deformable Solids”), Terskol, 1990, part 1, p. 83.Google Scholar
  3. 3.
    Courtney, T.H., Mechanical Behavior of Materials, Michigan: McGraw-Hill, 2000.Google Scholar
  4. 4.
    Tyumentsev, A.N., Ditenberg, I.A., Korotaev, A.D., and Denisov, K.I., Phys. Mesomech., 2013, vol. 16, no. 4, p. 319.CrossRefGoogle Scholar
  5. 5.
    Panin, V.E., Panin, A.V., Elsukova, T.F., and Popkova, Yu.F., Phys. Mesomech., 2015, vol. 18, no. 2, p. 89.CrossRefGoogle Scholar
  6. 6.
    Tyumentsev, A.N., Korotaev, A.D., and Pinzhin, Yu.P., Fiz. Mezomekh., 2004, vol. 7, no. 4, p. 35.Google Scholar
  7. 7.
    Vinogradov, A. and Estrin, Y., Prog. Mater. Sci., 2018, vol. 95, p. 172.CrossRefGoogle Scholar
  8. 8.
    Koneva, N., Kiseleva, S., and Popova, N., Evolyutsiya struktury i vnutrennie polya napryazhenii. Austenitnaya stal' (Evolution of the Structure and Internal Stress Fields. Austenitic Steel), Saarbrucken: LAP LAMBERT, 2017.Google Scholar
  9. 9.
    Kozlov, E.V., Koneva, N.A., and Popova, N.A., Bull. Russ. Acad. Sci.: Phys., 2009, vol. 73, no. 9, p. 1227.CrossRefGoogle Scholar
  10. 10.
    Calcaynotto, M., Ponge, D., Demir, E., and Raabe, D., Mater. Sci. Eng. A, 2010, vol. 527, p. 2738.CrossRefGoogle Scholar
  11. 11.
    Kundu, A. and Field, D.P., Mater. Sci. Eng. A, 2016, vol. 667, p. 435.CrossRefGoogle Scholar
  12. 12.
    Grampus, S., Vedensky, D.D., and Monnier, R., Philos. Mag. A, 1993, vol. 67, no. 6, p. 1447.ADSCrossRefGoogle Scholar
  13. 13.
    Rybin, V.V., Bol’shie plasticheskie deformatsii i razrushenie metallov (Severe Plastic Deformation and Metal Fracture), Moscow: Metallurgiya, 1986.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • N. A. Koneva
    • 1
    Email author
  • L. I. Trishkina
    • 1
  • T. V. Cherkasova
    • 1
    • 2
  1. 1.Tomsk State University of Architecture and BuildingTomskRussia
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations