Advertisement

Mechanical Properties of a Metal-Matrix Composite Based on Copper and Aluminum, Obtained via Shear Deformation under Pressure

  • R. R. KabirovEmail author
  • K. S. Nazarov
  • G. F. Korznikova
  • R. Kh. Khisamov
  • S. N. Sergeyev
  • M. I. Nagimov
  • R. R. Mulyukov
Article
  • 6 Downloads

Abstract

Results are presented from studying the structure and mechanical properties of an Al–Cu–Al metal-matrix composite obtained via shear under pressure on Bridgman anvils with grooves. The tensile strength is 485 MPa, considerably higher than that of either pure aluminum or copper. The main mechanism of failure is a viscous fracture along the Al matrix with no notable stratification along the interphase boundaries.

Notes

ACKNOWLEDGMENTS

This work was performed on equipment at the Shared Resource Center for the Structural and Physicomechanical Study of Materials, Institute for Problems of the Superplasticity of Metals, Russian Academy of Sciences.

FUNDING

This work was performed as part of State Task no. АААА-А17-117041310213-0, “Obtaining Materials by Means of Deformation,” for the Institute for Problems of the Superplasticity of Metals, Russian Academy of Sciences. It was supported by the Russian Science Foundation, grant no. 18-12-00440, “Microstructural Studies of a Metal-Matrix Composite and Measuring Its Mechanical Properties.”

REFERENCES

  1. 1.
    An, X., Lin, Q., Wu, Sh., and Zhang, Zh., Mater. Res. Lett., 2015, vol. 3, no. 3, p. 135.CrossRefGoogle Scholar
  2. 2.
    Mehr, V.Y., Toroghinejad, M.R., and Rezaeian, A., Mater. Sci. Eng. A, 2014, vol. 601, p. 40.CrossRefGoogle Scholar
  3. 3.
    Wei, X.Z., Zhou, Q., Xu, K.W., et al., Mater. Sci. Eng. A, 2018, vol. 726, p. 274.CrossRefGoogle Scholar
  4. 4.
    Khisamov, R.Kh., Nazarov, K.S., Sergeev, S.N., et al., Lett. Mater., 2015, vol. 5, no. 2, p. 119.CrossRefGoogle Scholar
  5. 5.
    Phuong, D.D., Trinh, P.V., An, N.V., et al., J. Alloys Compd., 2014, vol. 613, p. 68.CrossRefGoogle Scholar
  6. 6.
    Ohishi, K., Edalati, K., Kim, H.S., et al., Acta Mater., 2013, vol. 61, p. 3482.CrossRefGoogle Scholar
  7. 7.
    Fronczea, D.M., Chulisa, R., Litynska-Dobrzynska, L., et al., Mater. Des., 2017, vol. 130, p. 120.CrossRefGoogle Scholar
  8. 8.
    Nazarov, A.A. and Mulyukov, R.R., in Handbook of Nanoscience, Engineering and Technology, Boca Raton: CRC Press, 2002, chap. 22.Google Scholar
  9. 9.
    Ahna, B., Zhilyaev, A.P., Leef, H.-J., et al., Mater. Sci. Eng. A, 2015, vol. 635, p. 109.CrossRefGoogle Scholar
  10. 10.
    Korznikova, G.F., Mulyukov, R.R., and Zhilyaev, A.M., AIP Conf. Proc., 2018, vol. 2053, p. 030028.CrossRefGoogle Scholar
  11. 11.
    Korznikova, G.F., Zhilyaev, A.P., and Sergeev, S.N., IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 447, p. 012021.Google Scholar
  12. 12.
    Danilenko, V.N., Sergeev, S.N., Baimova, J.A., et al., Mater. Lett., 2019, vol. 236, p. 51.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • R. R. Kabirov
    • 1
    Email author
  • K. S. Nazarov
    • 1
  • G. F. Korznikova
    • 1
  • R. Kh. Khisamov
    • 1
  • S. N. Sergeyev
    • 1
  • M. I. Nagimov
    • 1
  • R. R. Mulyukov
    • 1
  1. 1.Institute for Problems of the Superplasticity of Metals, Russian Academy of SciencesUfaRussia

Personalised recommendations