Advertisement

Principles of Photon Echo Formation on Special Exciton States in Thin Textured Films at Room Temperature

  • I. I. PopovEmail author
  • A. U. Bakhodurov
  • N. S. Vashurin
  • V. O. Kompanets
  • A. N. Musanov
  • D. A. Nikitin
  • S. V. Chekalin
  • R. V. Belyaev
Article
  • 4 Downloads

Abstract

A way of obtaining new thin-film materials for forming photon echoes at room temperature on special exciton states in thin textured films obtained via magnetron sputtering is proposed, along with a model that explains the properties of new states and is associated with the formation of special exciton states. The dependence of the relaxation times of resonant transitions on the size of nanoscale clusters of surface defects is investigated for different film thicknesses and various semiconductor materials. Prospects for using such materials in medical technology are determined.

Notes

ACKNOWLEDGMENTS

This work was supported by the RF Ministry of Education and Science, project RFMEFI577170254 “An Intraoperational Navigation System for Minimally Invasive Surgery with the Support of Augmented Reality Technology Based on Virtual 3D Models of Organs, Obtained Using the Results from CT Diagnostics.”

REFERENCES

  1. 1.
    Belyanin, A.F. and Samoilovich, M.I., Nanomaterialy: IV. Tonkie plenki kak nanostrukturirovannye sistemy (Nanomaterials: IV. Thin Films as Nanostructured Systems), Moscow: Tekhnomash, 2008.Google Scholar
  2. 2.
    Young, D.L., Williamson, D.L., and Coutts, T.J., J. Appl. Phys., 2002, vol. 3, no. 1, p. 1464.ADSCrossRefGoogle Scholar
  3. 3.
    Anderson, J. and Chris, G., Rep. Prog. Phys., 2009, vol. 72, p. 126 501.CrossRefGoogle Scholar
  4. 4.
    Talapin, D.V., Lee, J.S., Kovalenko, M.V., et al., Chem. Rev., 2010, vol. 110, no. 1, p. 389.CrossRefGoogle Scholar
  5. 5.
    Chernov, A.A., Kristallografiya, 1971, vol. 16, no. 4, p. 842.Google Scholar
  6. 6.
    Obolenskii, S.V., Trudy 2-go soveshchaniya po proektu NATO SfP-973799 Semiconductors (Proc. 2nd Conf. on Project NATO SfP-973799 Semiconductors), Nizhny Novgorod, 2002, p. 155.Google Scholar
  7. 7.
    Kabyshev, A.V. and Konusov, F.V., Izv. Tomsk. Politekh. Univ., 2005, vol. 308, no. 7, p. 48.Google Scholar
  8. 8.
    Li, D., Leung, Y.H., and Djurisic, A.B., Appl. Phys. Lett., 2004, vol. 85, p. 160.Google Scholar
  9. 9.
    Babentsov, V.N., Budennaya, L.D., Gorban’, S.I., et al., Fiz. Tekh. Poluprovodn., 1990, vol. 24, no. 2, p. 370.Google Scholar
  10. 10.
    Moliver, S.S., Phys. Solid State, 1999, vol. 41, no. 3, p. 362.ADSCrossRefGoogle Scholar
  11. 11.
    Popov, I.I., Vashurin, N.S., Putilin, S.E., Stepanov, S.A., Sidorova, V.T., and Sushentsov, N.I., Bull. Russ. Acad. Sci.: Phys., 2014, vol. 78, no. 2, p. 152.CrossRefGoogle Scholar
  12. 12.
    Popov, I.I., Vashurin, N.S., Stepanov, S.A., et al., Izv. Akad. Nauk, Ser. Fiz., 2014, vol. 78, no. 3, p. 309.Google Scholar
  13. 13.
    Feldmann, J., Peter, G., Göbel, E.O., et al., Phys. Rev. Lett., 1987, vol. 59, p. 2337.ADSCrossRefGoogle Scholar
  14. 14.
    Aaviksoo, J., J. Lumin., 1991, vol. 48, p. 57.CrossRefGoogle Scholar
  15. 15.
    Agranovich, V.M. and Dubovskii, O.A., JETP Lett., 1966, vol. 3, p. 223.Google Scholar
  16. 16.
    Kavokin, A.V., Phys. Rev. B, 1994, vol. 50, p. 8000.ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • I. I. Popov
    • 1
    Email author
  • A. U. Bakhodurov
    • 1
  • N. S. Vashurin
    • 1
  • V. O. Kompanets
    • 2
  • A. N. Musanov
    • 1
  • D. A. Nikitin
    • 1
  • S. V. Chekalin
    • 2
  • R. V. Belyaev
    • 1
  1. 1.Volga State University of TechnologyYoshkar-OlaRussia
  2. 2.Institute of Spectroscopy, Russian Academy of SciencesTroitsk, MoscowRussia

Personalised recommendations