Capacitance Temperature Hysteresis of Condenser Structures Based on BSTO Ceramics of Different Compositions

  • A. A. Semenov
  • A. I. Dedyk
  • O. V. Pakhomov
  • Yu. V. Pavlova
  • I. L. Mylnikov
  • V. A. Krylov
Proceedings of the XXI National Conference on Magnetoelectrics Physics
  • 6 Downloads

Abstract

Results are presented from measuring the volt–farad characteristics, temperature hysteresis, and current-voltage characteristics of capacitor structures based on Ba0.55Sr0.45TiO3 ceramics with 12 wt % magnesium additive (BST(M)). It is shown that the rate of temperature change has a substantial effect on the type of ferroelectric hysteresis. Values of the pyroelectric coefficients for BST(M) ceramics in the paraelectric phase ((2–8) × 10−4 C m−2 K−1) are determined. It is shown that in the absence of an external electric field, the temperature hysteresis could be due to the pyroelectric effect.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smolenskii, G.A. Bokov, V.A., et al., Segnetoelektriki i antisegnetoelektriki (Ferroelectrics and Antiferroelectrics), Leningrad: Nauka, 1971.Google Scholar
  2. 2.
    Lines, M. and Glass, A., Principles and Applications of Ferroelectrics and Related Materials, Clarendon, 1977.Google Scholar
  3. 3.
    Segnetoelektriki v tekhnike SVCh (Ferroelectrics in Microwave Engineering), Vendik, O.G., Ed., Moscow: Sov. Radio, 1979.Google Scholar
  4. 4.
    Dedyk, A.I., Karmanenko, S.F., Melkov, A.A., et al., Ferroelectrics, 2003, vol. 286, no. 1, p.267.CrossRefGoogle Scholar
  5. 5.
    Yoon, K.H., Lee, J.C., Park, J., et al., Jpn. J. Appl. Phys., 2001, vol. 40, no. 12, p. 5497.ADSCrossRefGoogle Scholar
  6. 6.
    Starkov, A.S., Karmanenko, S.F., Pakhomov, O.V., Es’kov, A.V., Semikin, D., and Hagberg, J., Phys. Solid State, 2009, vol. 51, no. 7, p. 1510.ADSCrossRefGoogle Scholar
  7. 7.
    Marvan, M., Jonscher, A.K., and Fahnrich, J., J. Eur. Ceram. Soc., 2001, vol. 21, p. 1345.CrossRefGoogle Scholar
  8. 8.
    Starkov, A.S. and Pakhomov, O.V., Tech. Phys. Lett., 2010, vol. 36, no. 1, p.1.ADSCrossRefGoogle Scholar
  9. 9.
    Nenasheva, E.A., Kanareikin, A.D., Dedyk, A.I., and Pavlova, Yu.V., Phys. Solid State, 2009, vol. 51, no. 8, p. 1557.ADSCrossRefGoogle Scholar
  10. 10.
    Hagberg, J., Uusimaki, A., and Jantunen, H., Appl. Phys. Lett., 2008, vol. 92, p. 132909.ADSCrossRefGoogle Scholar
  11. 11.
    Dedyk, A.I., Kanareykin, A.D., Nenasheva, E.A., Pavlova, Ju.V., and Karmanenko, S.F., Tech. Phys., 2006, vol. 51, no. 9, p. 1168.CrossRefGoogle Scholar
  12. 12.
    Gladkii, V.V., Kirikov, V.A., and Volk, T.R., Phys. Solid State, 2002, vol. 44, no. 2, p. 365.ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • A. A. Semenov
    • 1
  • A. I. Dedyk
    • 1
  • O. V. Pakhomov
    • 2
  • Yu. V. Pavlova
    • 1
  • I. L. Mylnikov
    • 1
  • V. A. Krylov
    • 2
  1. 1.St. Petersburg State Electrotechnical University (LETI)St. PetersburgRussia
  2. 2.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations