Frequencies of Stretching and Bending OH (OD) Vibrations in KDP (DKDP) Crystals, According to the Temperature Dependence of Their Raman Spectrum

Proceedings of the XXI National Conference on Magnetoelectrics Physics
  • 5 Downloads

Abstract

The temperature dependence of OH (OD) vibrations in KDP (DKDP) crystals is studied by Raman spectroscopy in different scattering geometries at temperatures from 30 to 299 K. The three lower frequencies from the five well-known high-frequency bands of OH (OD) vibrations soften upon an increase in the paraelectric phase temperature. This results from the softening of the corresponding harmonic potential upon an increase in the interatomic distance, and these frequencies are attributed to bending vibrations. The two higher frequencies of OH (OD) vibrations are virtually independent of temperature with a slight tendency to grow upon an increase in the paraelectric phase temperature. This is in better agreement with the complicated temperature dependence of the energy levels of the double-well potential along a hydrogen bond and allows these bands to be attributed to stretching OH (OD) vibrations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lines, M. and Glass, A., Principles and Applications of Ferroelectrics and Related Materials, Clarendon, 1977.Google Scholar
  2. 2.
    Mita, Y., Takebe, K., Kobayashi, M., Endo, S., and Tominaga, Y., J. Phys.: Condens. Matter, 2006, vol. 18, p. 5185.ADSGoogle Scholar
  3. 3.
    Tominaga, Y., Kawahata, Y., and Amo, Y., Solid State Commun., 2003, vol. 125, p.419.ADSCrossRefGoogle Scholar
  4. 4.
    Blinc, R. and Hadzi, D., Mol. Phys., 1958, vol. 1, p.391.ADSCrossRefGoogle Scholar
  5. 5.
    Hill, R.M. and Ichiki, S.K., J. Chem. Phys., 1968, vol. 48, p.838.ADSCrossRefGoogle Scholar
  6. 6.
    Cody, C.A. and Khanna, R.K., Ferroelectrics, 1975, vol. 9, p.251.CrossRefGoogle Scholar
  7. 7.
    Liu, W.L., Xia, H.R., Wang, X.Q., et al., J. Alloys Compd., 2007, vol. 430, p.226.CrossRefGoogle Scholar
  8. 8.
    Reiter, G., Shukla, A., Platzman, P.M., and Mayers, J., New J. Phys., 2008, vol. 10, p. 013016.ADSCrossRefGoogle Scholar
  9. 9.
    Reiter, G.F., Mayers, J., and Platzman, P., Phys. Rev. Lett., 2002, vol. 89, p. 135505.ADSCrossRefGoogle Scholar
  10. 10.
    Tominaga, Y. and Urabe, H., Ferroelectrics, 1981, vol. 39, p. 1021.CrossRefGoogle Scholar
  11. 11.
    Novak, A., Struct. Bonding, 1974, vol. 18, p.177.CrossRefGoogle Scholar
  12. 12.
    Surovtsev, N.V., Optoelectron., Instrum. Data Process., 2017, vol. 53, p.250.ADSCrossRefGoogle Scholar
  13. 13.
    Lawrence, M.C. and Robertson, G.N., Ferroelectrics, 1981, vol. 34, p. 179.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Automation and Electrometry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations