Advertisement

Porous Ni–Al–CGO Cermet for Use in Solid Oxide Fuel Cells

  • A. A. Solovyev
  • A. S. MaznoyEmail author
  • K. A. Kuterbekov
  • S. A. Nurkenov
  • S. Opakhai
  • A. I. Kirdyashkin
  • V. D. Kitler
  • N. S. Pichugin
  • S. V. Rabotkin
  • I. V. Ionov
Article
  • 8 Downloads

Abstract

Porous Ni–Al–CGO cermet (CGO = Сe0.9Gd0.1O2) for use in solid oxide fuel cells was fabricated by thermal explosion (volume reaction) in Ni–Al–CGO powder compacts in different heat sink conditions. Temperature profiles of thermal explosion were recorded and analyzed as a function of green composition. Phase composition of resultant porous materials was found to depend on the CGO content of green mixture and temperature of vacuum annealing. Starting and final materials were characterized by XRD, SEM, and EDS. Synthesized uniform cermets with a porosity of 50–60% can be recommended for use as a support for solid oxide fuel cells with Ni/CGO anode.

Keywords:

SHS thermal explosion Ni–Al system Ni–Al–CGO cermet solid oxide fuel cells porous support 

Notes

FUNDING

This research was supported by the Ministry of Education and Science of the Republic of Kazakhstan in the framework of the scientific and technology Program BR05236795 “Development of Hydrogen Energy Technologies in the Republic of Kazakhstan” (agreement no. 307).

REFERENCES

  1. 1.
    Tan, W.C., Saw, L.H., Thiam, H.S., Xuan, J., Cai, Z., and Yew, M.C., Overview of porous media/metal foam application in fuel cells and solar power systems, Renewable Sustainable Energy Rev., 2018, vol. 96, pp. 181–197.  https://doi.org/10.1016/j.rser.2018.07.032 CrossRefGoogle Scholar
  2. 2.
    McKenna, B.J., Christiansen, N., Schauperl, R., Prenninger, P., Nielsen, J., Blennow, P., Klemenso, T., Ramousse, S., Kromp, A., and Weber, A., Advances in metal supported cells in the METSOFC EU consortium, Fuel Cells, 2013, vol. 13, no. 4, pp. 592–597.  https://doi.org/10.1002/fuce.201200185 CrossRefGoogle Scholar
  3. 3.
    Brandner, M., Bram, M., Froitzheim, J., Buchkremer, H.P., and Stöver, D., Electrically conductive diffusion barrier layers for metal-supported SOFC, Solid State Ionics, 2008, vol. 179, nos. 27–32, pp. 1501–1504.  https://doi.org/10.1016/j.ssi.2008.03.002 CrossRefGoogle Scholar
  4. 4.
    Kim, K.J., Kim, S.J., and Choi, G.M., Y0.08Sr0.88TiO3–CeO2 composite as a diffusion barrier layer for stainless-steel supported solid oxide fuel cell, J. Power Sources, 2016, vol. 307, pp. 385–390.  https://doi.org/10.1016/j.jpowsour.2015.12.130 CrossRefGoogle Scholar
  5. 5.
    Solovyev, A.A., Rabotkin, S.V., Shipilova, A.V., Kirdyashkin, A.I., Ionov, I.V., Kovalchuk, A.N., Maznoy, A.S., Kitler, V.D., and Borduleva, A.O., Solid oxide fuel cell with Ni–Al support, Int. J. Hydrogen Energy, 2015, vol. 40, no. 40, pp. 14077–14084.  https://doi.org/10.1016/j.ijhydene.2015.07.151 CrossRefGoogle Scholar
  6. 6.
    Solov’ev, A.A., Sochugov, N.S., Ionov, I.V., Kirdyashkin, A.I., Kitler, V.D., Maznoi, A.S., Maksimov, Y.M., and Sigfusson, T.I., Synthesis and investigation of porous Ni-Al substrates for solid-oxide fuel cells, Inorg. Mater. Appl. Res., 2013, vol. 4, no. 5, pp. 431–437. https://doi.org/10.1134/S2075113313050171CrossRefGoogle Scholar
  7. 7.
    Maznoy, A., Kirdyashkin, A., Kitler, V., and Solovyev, A., Combustion synthesis and characterization of porous Ni–Al materials for metal-supported solid oxide fuel cells application, J. Alloys Comp., 2017, vol. 697, pp. 114–123. https://doi.org/10.1016/j.jallcom.2016.11.350CrossRefGoogle Scholar
  8. 8.
    Sytschev, A.E., Vadchenko, S.G., Boyarchenko, O.D., and Shchukin, A.S., Ni3Al/C composites by thermal explosion, Int. J. Self-Propag. High-Temp. Synth., 2018, vol. 27, no. 1, pp. 64–65.  https://doi.org/10.3103/S1061386218010090 CrossRefGoogle Scholar
  9. 9.
    Sytschev, A.E., Vrel, D., Boyarchenko, O.D., Khrenov, D.S., Sachkova, N.V., and Kovalev, I.D., SHS joining by thermal explosion in (Ni + Al)/Nb/(Ni + Al + Nb) sandwiches: Microstructure of transition zone, Int. J. Self-Propag. High-Temp. Synth., 2017, vol. 26, no. 1, pp. 49–53.  https://doi.org/10.3103/S1061386217010137 CrossRefGoogle Scholar
  10. 10.
    Windes, W.E., Zuck, L.D., Shaber, E.L., Erickson, A.E., and Lessing, P.A., A low CTE intermetallic bipolar plate, Proc. Electrochem. Soc., 2003, vol. 2003–07, pp. 879–887.  https://doi.org/10.1149/200307.0879PV CrossRefGoogle Scholar
  11. 11.
    Kharton, V.V., Marques, F.M.B., and Atkinson, A., Transport properties of solid oxide electrolyte ceramics: A brief review, Solid State Ionics, 2004, vol. 174, nos. 1–4, pp. 135–149.  https://doi.org/10.1016/j.ssi.2004.06.015 CrossRefGoogle Scholar
  12. 12.
    Maznoy, A., Kirdyaskin, A., Kitler, V., Pichugin, N., Salamatov, V., and Tcoi, K., Self-propagating high-temperature synthesis of macroporous B2 + L12 Ni–Al intermetallics used in cylindrical radiant burners, J. Alloys Comp., 2019, vol. 792. pp. 561–573.  https://doi.org/10.1016/j.jallcom.2019.04.023 CrossRefGoogle Scholar
  13. 13.
    Vasylechko, L., Senyshyn, A., Trots, D., Niewa, R., Schnelle, W., and Knapp, M., CeAlO3 and Ce1−xRxAlO3 (R = La, Nd) solid solutions: Crystal structure, thermal expansion and phase transitions, J. Solid State Chem., 2007, vol. 180, no. 4, pp. 1277–1290.  https://doi.org/10.1016/j.jssc.2007.01.020 CrossRefGoogle Scholar
  14. 14.
    Kim, K.H., Park, Y.M., and Kim, H., Fabrication and evaluation of the thin NiFe supported solid oxide fuel cell by co-firing method, Energy, 2010, vol. 35, no. 12, pp. 5385–5390.  https://doi.org/10.1016/j.energy.2010.07.018 CrossRefGoogle Scholar
  15. 15.
    Cho, H.J., Kim, K.J., Park, Y.M., and Choi, G.M., Flexible solid oxide fuel cells supported on thin and porous metal, Int. J. Hydrogen Energy, 2016, vol. 41, no. 22, pp. 9577–9584.  https://doi.org/10.1016/j.ijhydene.2016.04.040 CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • A. A. Solovyev
    • 1
  • A. S. Maznoy
    • 2
    Email author
  • K. A. Kuterbekov
    • 3
  • S. A. Nurkenov
    • 3
  • S. Opakhai
    • 3
  • A. I. Kirdyashkin
    • 2
  • V. D. Kitler
    • 2
  • N. S. Pichugin
    • 2
  • S. V. Rabotkin
    • 1
  • I. V. Ionov
    • 1
  1. 1.Institute of High Current Electronics, Siberian Branch, Russian Academy of SciencesTomskRussia
  2. 2.Tomsk Scientific Center, Siberian Branch, Russian Academy of SciencesTomskRussia
  3. 3.Gumilev Eurasian National UniversityNur-SultanKazakhstan

Personalised recommendations