Single-Step Solution-Combustion Synthesis of Magnetically Soft NiFe2O4 Nanopowders with Controllable Parameters

  • K. D. MartinsonEmail author
  • I. A. Cherepkova
  • I. B. Panteleev
  • V. I. Popkov


One-step solution-combustion synthesis with glycine as a fuel was used to obtain ferromagnetic nickel ferrite (NiFe2O4) spinel. According to EDX data, the elemental composition of all synthesized samples corresponded to NiFe2O4, while the XRD results showed the formation of phase-pure nickel ferrite spinel. NiFe2O4 nanopowders had a branched porous microstructure as established by SEM analysis. Variation in the Red/Ox ratio (glycine to nitrate ratio G/N = 0.4, 0.6, 0.8, 1.0, 1.2) was found to affect the average size of nickel ferrite crystallites (D) within the range 23–37 nm. The results of vibration magnetometry showed the ferromagnetic ordering in magnetic moments of NiFe2O4 nanopowders. The magnetic parameters of synthesized nickel ferrite—saturation magnetization Ms = 31–59 emu/g, remanent magnetization Mr = 3–13 emu/g, and coercive force Hc = 10–95 Oe—were found to depend on crystallite size D. The fact that the values of Ms, Mr, and Hc grow with increasing D opens up a way to synthesis of NiFe2O4 nanopowders with controllable magnetic parameters by simply varying the G/N ratio of starting solution.


solution-combustion synthesis nickel ferrite nanocrystals ferromagnets magnetic properties 


  1. 1.
    Moradmard, H., Shayesteh, S.F., Tohidi, P., Abbas, Z., and Khaleghi, M., Structural, magnetic and dielectric properties of magnesium doped nickel ferrite nanoparticles, J. Alloys Comp., 2015, vol. 650, pp. 116–122. CrossRefGoogle Scholar
  2. 2.
    Zhou, H., An, Z., Yuan, C., and Luo, X., Light-modulated ferromagnetism of strained NiFe2O4 nanocrystals, Ceram. Int., 2019, vol. 45, pp. 13319–13323. CrossRefGoogle Scholar
  3. 3.
    Kumar, N.P., Chary, K.A., Sumana, B., Rao, K.S., Suresh, M.B., Raja, M.M., and Srinivas, A., Investigation of sintering methodologies and its influence on magnetic and electric properties of NiFe2O4: A comparative study, Mater. Res. Express, 2019, vol. 6, no. 8, 086112. CrossRefGoogle Scholar
  4. 4.
    Kharat, P.B., Shisode, M.V., Birajdar, S.D., Bhoyar, D.N., and Jadhav, K.M., Synthesis and characterization of water based NiFe2O4 ferrofluid, AIP Conf. Proc., 2017, vol. 1832, no. 1, 050122. CrossRefGoogle Scholar
  5. 5.
    Deivakumaran, R., Sathya, G., Suresh Babu, S.K., and Berchmans, L.J., Structural, morphological, optical, and dielectric properties of Ni1–xZnxFe2O4 (x = 0–1) nanoparticles, J. Mater. Sci.: Mater. Electron., 2016, vol. 28, no. 2, pp. 1726–1739. CrossRefGoogle Scholar
  6. 6.
    Chauhan, L., Shukla, A.K., and Sreenivas, K., Dielectric and magnetic properties of nickel ferrite ceramics using crystalline powders derived from DL alanine fuel on sol–gel auto-combustion, Ceram. Int., 2015, vol. 41, no. 7, pp. 8341–8351. CrossRefGoogle Scholar
  7. 7.
    Kombaiah, K., Vijaya, J.J., Kennedy, L.J., and Kaviyarasu, K., Catalytic studies of NiFe2O4 nanoparticles prepared by conventional and microwave combustion method, Mater. Chem. Phys., 2018, vol. 221, pp. 11–28. CrossRefGoogle Scholar
  8. 8.
    Polaert, I., Bastin, S., Legras, B., Estel, L., and Braidy, N., Dielectric and magnetic properties of NiFe2O4 at 2.45 GHz and heating capacity for potential uses under microwaves, J. Magn. Magn. Mater., vol. 374, pp. 731–739. CrossRefGoogle Scholar
  9. 9.
    Yattinahalli, S.S., Kapatkar, S.B., Ayachit, N.H., and Mathad, S.N., Synthesis and structural characterization of nanosized nickel ferrite, Int. J. Self-Propag. High-Temp. Synth., 2013, vol. 22, no. 3, pp. 147–150. CrossRefGoogle Scholar
  10. 10.
    Martinson, K.D., Kozyritskaya, S.S., Panteleev, I.B., and Popkov, V.I., Low coercivity microwave ceramics based on LiZnMn ferrite synthesized via glycine–nitrate combustion, Nanosyst.: Phys. Chem. Math., 2019, vol. 10, no. 3, pp. 313–317. CrossRefGoogle Scholar
  11. 11.
    Yang, L., Xie, Y., Zhao, H., Wu, X., and Wang, Y., Preparation and gas-sensing properties of NiFe2O4 semiconductor materials, Solid-State Electron., 2005, vol. 49, pp. 1029–1033. CrossRefGoogle Scholar
  12. 12.
    Gadzhimagomedov, S.H., Alikhanov, N.M., Emirov, R.M., Palchaev, D.K., Murlieva, Z.K., Rabadanov, M.K., Sadykov, S.A., Khamidov, M.M., and Hash, A.D., Structure and properties of nanostructured YBa2Cu3O7–δ, BiFeO3 and Fe3O4, Semiconductors, 2017, vol. 51, no. 13, pp. 1686–1691. CrossRefGoogle Scholar
  13. 13.
    Dyachenko, S.V., Martinson, K.D., Cherepkova, I.A., and Zhernovoi, I.A., Particle size, morphology and properties of transition metal ferrospinels of the MFe2O4 (M = Co, Ni, Zn) type produced by glycine–nitrate combustion, Russ. J. Appl. Chem., 2016, vol. 89, no. 4, pp. 535–539. CrossRefGoogle Scholar
  14. 14.
    Senthilkumar, B., Selvan, R.K., and Vinothbabu, P., Structural, magnetic, electrical and electrochemical properties of NiFe2O4 synthesized by the molten salt technique, Mater. Chem. Phys., 2011, vol. 130, nos. 1–2, pp. 285–292. CrossRefGoogle Scholar
  15. 15.
    Karpova, S.S., Moshnikova, V.A., Maksimov, A.I., Mjakin, S.V., and Kazantseva, N.E., Study of the effect of the acid-base surface properties of ZnO, Fe2O4 and ZnFe2O4 oxides on their gas sensitivity to ethanol vapor, Semiconductors, 2013, vol. 47, no. 8, pp. 1026–1030.CrossRefGoogle Scholar
  16. 16.
    Ceylan, A., Ozcan, S., Ni, C., and Shah, S.I., Solid state reactions synthesis of NiFe2O4 nanoparticles, J. Magn. Magn. Mater., 2008, vol. 320, no. 6, pp. 857–863. CrossRefGoogle Scholar
  17. 17.
    Huo, J. and Wei, M., Characterization and magnetic properties of nanocrystalline nickel ferrite synthesized by hydrothermal method, Mater. Lett., 2009, vol. 63, nos. 13–14, pp. 1183–1184. CrossRefGoogle Scholar
  18. 18.
    Larumble, S., Perez-Landazabal, J.I., Pastor, J.M., and Gomez-Polo, C., Sol–gel NiFe2O4 nanoparticles: Effect of the silica coating, J. Appl. Phys., 2012, vol. 111, 103911. CrossRefGoogle Scholar
  19. 19.
    Parthasarathi, B., Solution combustion synthesis as a novel route to preparation of catalysts, Int. J. Self-Propag. High-Temp. Synth., 2019, vol. 28, no. 2, pp. 77–109. CrossRefGoogle Scholar
  20. 20.
    Popkov, V.I., Almjasheva, O.V., Nevedomskiy, V.N., Sokolov, V.V. and Gusarov, V.V., Crystallization behavior and morphological features of YFeO3 nanocrystallites obtained by glycine-nitrate combustion, Nanosystems: Phys. Chem.,Math., 2015, vol. 6, no. 6, pp. 866–874. CrossRefGoogle Scholar
  21. 21.
    Varma, A., Mukasyan, A.S., Rogachev, A.S., and Manukyan, K.V., Solution combustion synthesis of nanoscale materials, Chem. Rev., 2016, vol. 116, no. 23, pp. 14493–14586. CrossRefGoogle Scholar
  22. 22.
    Martinson, K.D., Cherepkova, I.A., and Sokolov, V.V., Formation of cobalt ferrite nanoparticles during the burning of glycine–nitrate and their magnetic properties, Glass Phys. Chem., 2018, vol. 44, no. 1, pp. 21–25. CrossRefGoogle Scholar
  23. 23.
    Mukasyan, A.S. and Rogachev, A.S., Combustion synthesis: Mechanically induced nanostructured materials, J. Mater. Sci., 2017, vol. 52, no. 20, pp. 11826–11833. CrossRefGoogle Scholar
  24. 24.
    Popkov, V.I., Almjasheva, O.V., Schmidt, M.P., Izotova, S.G., and Gusarov, V.V., Features of nanosized YFeO3 formation under heat treatment of glycine–nitrate combustion products, Russ. J. Inorg. Chem., 2015, vol. 60, no. 10, pp. 1193–1198. CrossRefGoogle Scholar
  25. 25.
    Martinson, K.D., Kondrashkova, I.S., and Popkov, V.I., Synthesis of EuFeO3 nanocrystals by glycine–nitrate combustion method, Russ. J. Appl. Chem., 2017, vol. 90, no. 8, pp. 1214–1218. CrossRefGoogle Scholar
  26. 26.
    Kondrashkova, I.S., Martinson, K.D., Zakharova, N.V., and Popkov, V.I., Synthesis of HoFeO3 photocatalyst via heat treatment of products of glycine-nitrate combustion, Russ. J. Gen. Chem., 2018, vol. 88, no. 12, pp. 2465–2471. CrossRefGoogle Scholar
  27. 27.
    Liu, J., Xiao, J., Zeng, X., Dong, P., Zhao, J., Zhang, Y., and Li, X., Combustion synthesized macroporous structure MFe2O4 (M = Zn, Co) as anode materials with excellent electrochemical performance for lithium ion batteries, J. Alloys Comp., 2017, vol. 699, pp. 401–407. CrossRefGoogle Scholar
  28. 28.
    Anupama, A.V., Kumar, R., Choudhary, H.K., and Sahoo, B., Synthesis of coral-shaped yttrium-aluminum-iron garnets by solution-combustion method, Ceram. Int., 2018, vol. 44, no. 3, pp. 3024–3031. CrossRefGoogle Scholar
  29. 29.
    Zhuravlev, V.D., Bamburov, V.G, Beketov, A.R., Perelyaeva, L.A., Baklanova, I.V., Sivtsova, O.V., Vasil’ev, V.G., Vladimirova, E.V., Shevchenko, V.G., and Grigorov, I.G., Solution combustion synthesis of α-Al2O3 using urea, Ceram. Int., 2013, vol. 39, no. 2, pp. 1379–1384. CrossRefGoogle Scholar
  30. 30.
    Shelar, M.B., Puri, V.R., Yadav, S.N., Kurane, R.M., and Patange, S.M., Magnetoelectric composites yNi1–xCdxFe2O4 + (1 – y)Ba0.8Sr0.2ToO3 (x = 0.2, 0.4, 0.6; y = 0.15, 0.30, 0.45): Solution-combustion synthesis and microwave properties, Int. J. Self-Propag. High-Temp. Synth., 2018, vol. 27, no. 3, pp. 167–173. CrossRefGoogle Scholar
  31. 31.
    Parthasarathi, R., Berchmans, L.J., Pretha, R., Senguttuvan, G., and Umapathy, G., Combustion synthesis of nanocrystalline nickel ferrite using hexamine as a fuel, Int. J. Self-Propag. High-Temp. Synth., 2011, vol. 20, no. 4, pp. 236–240. CrossRefGoogle Scholar
  32. 32.
    Jacob, J. and Khadar, A., Investigation of mixed spinel structure of nanostructured nickel ferrite, J. Appl. Phys., 2010, vol. 107, 113310. CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • K. D. Martinson
    • 1
    Email author
  • I. A. Cherepkova
    • 2
  • I. B. Panteleev
    • 2
  • V. I. Popkov
    • 1
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.Saint-Petersburg State Institute of TechnologySt. PetersburgRussia

Personalised recommendations