Advertisement

Solution Combustion Synthesis of ZnO Using Binary Fuel (Glycine + Citric Acid)

Abstract

Solution combustion synthesis (SCS) of zinc oxide was performed using a binary fuel, glycine and citric acid. It was established that combustion occurs due to oxidation of zinc nitrate–glycine complexes. Citric acid acts as an inhibitor of SCS reaction. An increase in relative content of organic fuel in the solution leads to a reduction in maximal combustion temperature and to formation of elemental carbon (0.2–1.6 wt %) and organic fragments (1.55–3.29 wt %) in SCS-produced zinc oxide. Carbon impurity and organic fragments were removed by annealing at 600°С. The produced wurtzite-type ZnO crystals had a size of 27–37 nm and were assembled into agglomerates. After annealing at 500°С, the specific surface of the powder was 8.44–11.09 m2/g. The photocatalytic activity of ZnO powder was evaluated from the rate of hydroquinone photodecomposition in solution.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    Dean, J.A., Lange’s Handbook of Chemistry, New York: McGraw-Hill, 1999.

  2. 2

    Tabasco-Novelo, C., May-Crespo, J., Ramírez-Rincón, J.A., Forero-Sandoval, I.Y., Rodríguez-Gattorno, G., Quintana, P., Alvarado-Gil, J.J., Effects of sintering on the thermal and optical properties of zinc oxide ceramic, Int. J. Thermophys., 2018, vol. 39, no. 2, article 22. https://doi.org/10.1007/s10765-017-2330-7

  3. 3

    Kinemuchi, Y., Mikami, M., Kobayashi, K., Watari, K., and Hotta, Y., Thermoelectric properties of nanograined ZnO, J. Electron. Mater., 2010, vol. 39, no. 9, pp. 2059–2063. https://doi.org/10.1007/s11664-009-1009-7

  4. 4

    Özgür, Ü., Hofstetter, D., and Morkoç, H., ZnO devices and applications: A review of current status and future prospects, Proc. IEEE, 2010, vol. 98, no. 7, pp. 1255–1268. https://doi.org/10.1109/JPROC.2010.2044550

  5. 5

    Hembram, K., Sivaprahasam, D., and Rao, T.N., Combustion synthesis of doped nanocrystalline ZnO powders for varistor applications, J. Eur. Ceram. Soc., 2011, vol. 31, no. 10, pp. 1905–1913. https://doi.org/10.1016/j.jeurceramsoc.2011.04.005

  6. 6

    Matei, A., Tucureanu, V., Dumitrescu, L., Aspects regarding synthesis and applications of ZnO nanomaterials, Bull. Transilv. Univ. Braşov, Ser. I:Eng. Sci., 2014, vol. 7, no. 2, pp. 45–52.

  7. 7

    Orante-Barrón, V.R., Escobar-Ochoa, F.M., Cruz-Vázquez, C., and Bernal, R., Thermoluminescence of novel zinc oxide nanophosphors obtained by glycine-based solution combustion synthesis, J. Nanomater., 2015, 273571. https://doi.org/10.1155/2015/273571

  8. 8

    Moezzi, A., McDonagh, A.M., and Cortie, M.B., Zinc oxide particles: Synthesis, properties and applications, Chem. Eng. J., 2012, vols. 185–186, pp. 1–22. https://doi.org/10.1016/j.cej.2012.01.076

  9. 9

    Hull, S. and Trawczynski, J., Steam reforming of ethanol on zinc containing catalysts with spinel structure, Int. J. Hydrogen Energy, 2014, vol. 39, no. 9, pp. 4259–4265. https://doi.org/10.1016/j.ijhydene.2013.12.184

  10. 10

    Vinay Kumar, B., Bhojya Naik, H.S., Girijab, D., and Vijaya Kumar, B., ZnO nanoparticle as catalyst for efficient green one-pot synthesis of coumarins through Knoevenagel condensation, J. Chem. Sci., 2011, vol. 123, no. 5, pp. 615–621. https://doi.org/10.1007/s12039-011-0133-0

  11. 11

    Banerjee, B., Recent developments on nano ZnO catalyzed synthesis of bioactive heterocycles, J. Nanostr. Chem., 2017, vol. 7, no. 4, pp. 389–413. https://doi.org/10.1007/s40097-017-0247-0

  12. 12

    Huang, L., Kramer, G.J., Wieldraaijer, W., Brands, D.S., Poels, E.K., Castricum, H.L., and Bakker, H., Methanol synthesis over Cu/ZnO catalysts prepared by ball milling, Catal. Lett., 1997, vol. 48, nos. 1–2, pp. 55–59. https://doi.org/10.1023/A:1019014701674

  13. 13

    González-Cortés, S.L. and Imbert, F.E., Fundamentals, properties and applications of solid catalysts prepared by solution combustion synthesis (SCS), Appl. Catal. A: Gen., 2013, vol. 452, pp. 117–131. https://doi.org/10.1016/j.apcata.2012.11.024

  14. 14

    Sun, Y., Chen, L., Bao, Y., Zhang, Y., Wang, J., Fu, M., Wu, J., and Ye, D., The applications of morphology controlled ZnO in catalysis, Catalysts, 2016, vol. 6, no. 12. https://doi.org/10.3390/catal6120188

  15. 15

    Milenova, K.I., Nikolov, P.M., Kasabova, N.A., and Avramova, I.A., Ozone decomposition on ZnO catalysts obtained from different precursors, Pol. J. Chem. Technol., 2014, vol. 16, no. 4, pp. 55–59. https://doi.org/10.2478/pjct-2014-0070

  16. 16

    Gaya, U.I., Comparative analysis of ZnO-catalyzed photo-oxidation of p-chlorophenols, Eur. J. Chem., 2011, vol. 2, no. 2, pp. 163–167. https://doi.org/10.5155/eurjchem.2.2.163-167.369

  17. 17

    Gyrdasova, O.I., Krasil’nikov, V.N., Baklanova, I.V., Buldakova, L.Yu., and Yanchenko, M.Yu., Synthesis, structure, and optical and photocatalytic properties of quasi-one-dimensional ZnO doped with Co3O4 and carbon, Bull. Russ. Acad. Sci.: Phys., 2016, vol. 80, no. 11, pp. 1298–1302. https://doi.org/10.3103/S1062873816110204

  18. 18

    Krasil'nikov, V.N., Dyachkova, T.V., Tyutyunnik, A.P., Gyrdasova, O.I., Melkozerova, M.A., Baklanova, I.V., Perevozchikova, Yu.A., Emelyanova, S.M., Weber, H.W., and Marchenkov, V.V., Magnetic and optical properties as well as EPR studies of polycrystalline ZnO synthesized from different precursors, Mater. Res. Bull., 2018, vol. 97, pp. 553–559. https://doi.org/10.1016/j.materresbull.2017.09.061

  19. 19

    Ryu, J.-H., Kongsy, P., Limb, D.-Y., Choc, S.-B., and Song, J.-H., Facile glycothermal synthesis of ZnO nanopowder at low temperature, Ceram. Int., 2016, vol. 42, no. 15, pp. 17565–17570. https://doi.org/10.1016/j.ceramint.2016.08.070

  20. 20

    Brintha, S.R. and Ajitha, M., Synthesis and characterization of ZnO nanoparticles via aqueous solution, sol–gel, and hydrothermal methods, IOSR J. Appl. Chem., 2015, vol. 8, no. 11, ver. 1, pp. 66–72. https://doi.org/10.9790/5736-081116672

  21. 21

    Kumar, V.S.S. and Rao, K.V., Polymer assisted combustion synthesis of La-doped ZnO nanoparticles: Structural, thermal, optical, and morphological studies, J. Optoelectron. Biomed. Mater., 2017, vol. 9, no. 1, pp. 31–40.

  22. 22

    Bai, D.S., Kumar, V.R., and Suvarna, R.P., Synthesis and characterization of zinc oxide nanoparticles by solution combustion method: DC conductivity studies, Indian J. Adv. Chem. Sci., 2017, vol. 5, no. 3, pp. 137–141. https://doi.org/10.22607/IJACS.2017.503004

  23. 23

    Lucilha, A.C., Afonso, R., Silva, P.R.C., Lepre, L.F., Andoc, R.A., and Dall’Antonia, L.H., ZnO prepared by solution combustion synthesis: Characterization and application as photoanode, J. Braz. Chem. Soc., 2014, vol. 25, no. 6, pp. 1091–1100. https://doi.org/10.5935/0103-5053.20140085

  24. 24

    Khaliullin, Sh.M., Zhuravlev, V.D., and Bamburov, V.G., Solution-combustion synthesis of oxide nanoparticles from nitrate solutions containing glycine and urea: Thermodynamic aspects, Int. J. Self-Propag. High-Temp. Synth., 2016, vol. 25, no. 3, pp. 139–148. https://doi.org/10.3103/S1061386216030031

  25. 25

    Khaliullin, Sh.M., Bamburov, V.G., Russkikh, O.V., Ostroushko, A.A., and Zhuravlev, V.D., CaZrO3 Synthesis in combustion reactions with glycine, Dokl. Chem., 2015, vol. 461, no. 2, pp. 93–95. https://doi.org/10.1134/S0012500815040011

  26. 26

    Krasil’nikov, V.N., Shtin, A.P., Gyrdasova, O.I., Polyakov, E.V., Buldakova, L.Yu., Yanchenko, M.Yu., Zainullina, V.M., Zhukov, V.P., Synthesis and photocatalytic activity of Ti1 – xVxO2 – yCy whiskers in hydroquinone oxidation in aqueous solutions, Russ. J. Inorg. Chem., 2010, vol. 55, no. 8, pp. 1184–1191. https://doi.org/10.1134/S003602361008005X

  27. 27

    Farbun, I.A., Romanova, I.V., Terikovskaya, T.E., Dzanashvili, D.I., and Kirillov, S.A., Complex formation in the course of synthesis of zinc oxide from citrate solutions, Russ. J. Appl. Chem., 2007, vol. 80, no. 11, pp. 1798–1803. https://doi.org/10.1134/S1070427207110031

  28. 28

    Khaliullin, Sh.M., Zhuravlev, V.D., and Bamburov, V.G., Solution-combustion synthesis of MZrO3 zirconates (M = Ca, Sr, Ba) in open reactor: Thermodynamic analysis and experiment, Int. J. Self-Propag. High-Temp. Synth., 2017, vol. 26, no. 2, pp. 93–101. https://doi.org/10.3103/S1061386217020078

  29. 29

    Gyrdasova, O.I., Krasil’nikov, V.N., Shalaeva, E.V., Baklanova, I.V., Melkozerova, M.A., Buldakova, L.Yu., and Yanchenko, M.Yu., Optical and photocatalytic properties of quasi-one-dimensional ZnO activated by carbon, Mendeleev Commun., 2014, vol. 24, no. 3, 143–144. https://doi.org/10.1016/j.mencom.2014.04.004

Download references

Author information

Correspondence to Sh. M. Khaliullin or V. D. Zhuravlev or L. V. Ermakova.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khaliullin, S.M., Zhuravlev, V.D., Ermakova, L.V. et al. Solution Combustion Synthesis of ZnO Using Binary Fuel (Glycine + Citric Acid). Int. J Self-Propag. High-Temp. Synth. 28, 226–232 (2019). https://doi.org/10.3103/S1061386219040058

Download citation

Keywords:

  • solution combustion synthesis
  • binary fuel
  • zinc oxide
  • temperature profiles
  • photocatalytic activity