Metallurgical SHS Processes as a Route to Industrial-Scale Implementation: An Autoreview

Article
  • 10 Downloads

Abstract

The paper addresses to the practical development of a novel process technology for large-tonnage SHS-production of alloying agents and master alloys–metallurgical SHS process technology. The suggested and tested technique is based on use of various metallurgically produced allows, including dusty wastes of ferroalloy plants. The replacement of high-purity starting powders by less expensive and accessible ferroalloys afforded for transition from existing laboratory-scale fabrication of SHS materials to large-tonnage SHS manufacture.

Keywords

SHS composite ferroalloys nitrogen-containing alloying agents industrial-scale production 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Merzhanov, A.G., Solid-flame combustion: Fundamentals, advance, and prospects, Izv. Ross. Akad. Nauk, Ser. Khim., 1997, vol. 46, no. 1, pp. 7–31.Google Scholar
  2. 2.
    Naiborodenko, Yu.S., Itin, V.I., Ushakov, A.G., Merzhanov, A.G., and Borovinskaya, I.P., A method for processing powder materials, USSR Inventor’s Certificate 420 394, Byull. Izobret., 1974, no. 11.Google Scholar
  3. 3.
    Lyakishev, N.P., Pliner, Yu.R., Ignatenko, G.F., and Lappo, S.I., Alyuminotermiya (Aluminothermy), Moscow: Metallurgiya, 1978.Google Scholar
  4. 4.
    Maslov, V.M., Borovinskaya, I.P., and Ziatdinov, M.Kh., Combustion of the systems niobium–aluminum and niobium–germanium, Combust. Explos. Shock Waves, 1979, vol. 15, no. 1, pp. 41–47. doi 10.1007/BF00785327CrossRefGoogle Scholar
  5. 5.
    Ziatdinov, M.Kh. and Shatokhin, I.M., SHS technology of ferroalloys nitriding, Proc. Int. Cong. INFACON XII, Helsinki, 2010, pp. 899–909.Google Scholar
  6. 6.
    Ziatdinov, M.Kh., Maksimov, Yu.M., Kolmakov, A.D., Merzhanov, A.G., and Borovinskaya, I.P., Metallic composition and method of its manufacturing, GB Patent 2080785, 1983.Google Scholar
  7. 7.
    Ziatdinov, M.Kh., Maksimov, Yu.M., Kolmakov, A.D., Merzhanov, A.G., and Borovinskaya, I.P., Metallkomposition und Verfahren zu deren Herstellung, FRG Patent 3011962, 1987.Google Scholar
  8. 8.
    Ziatdinov, M.Kh., Maksimov, Yu.M., and Merzhanov, A.G., A method for production of boron-containing alloying agents, USSR Inventor’s Certificate 1770434, 1992.Google Scholar
  9. 9.
    Ziatdinov, M.Kh., Maksimov, Yu.M., and Merzhanov, A.G., Procede de fabrication d`une composition bore dàlliage, Fr. Patent 2681877, 1993.Google Scholar
  10. 10.
    Ziatdinov, M.Kh., Maksimov, Yu.M., and Merzhanov, A.G., A method of making mixture of boron alloys, CN Patent 1071968, 1993.Google Scholar
  11. 11.
    Fuchs, A., A method for producing nitriding agents, US Patent 3384455, 1968.Google Scholar
  12. 12.
    Fuchs, A. and Babel, A., Sinter products for nitriding steels, US Patent 3472655, 1969.Google Scholar
  13. 13.
    Merzhanov, A.G., Borovinskaya, I.P., and Volodin, Yu.E., Combustion of porous metallic samples in nitrogen, Dokl. Akad. Nauk SSSR, 1972, vol. 206, no. 4, pp. 905–908.Google Scholar
  14. 14.
    Ziatdinov, M.Kh. and Shatokhin, I.M., Self-propagating high-temperature synthesis of ferrovanadium nitride for use in smelting high-strength low-alloy steels, Steel Transl., 2009, vol. 39, no. 11, pp. 1005–1011. doi 10.3103/S0967091209110102CrossRefGoogle Scholar
  15. 15.
    Kitchingman, W.J. and Bedford, G.M., Mechanism and transformation kinetics of the alpha → sigma phase transformation in iron–vanadium alloys, Met. Sci. J., 1971, vol. 5, no. 1, pp. 121–125.CrossRefGoogle Scholar
  16. 16.
    Ziatdinov, M.Kh. and Gubar, A.G., Combustion of titanium powders with forced filtration, Abstr. Int. Symp. on the Chemistry of Flame Front, Almaty, 1997, pp. 59–61.Google Scholar
  17. 17.
    Tugutov, A.V., Ziatdinov, M.Kh., and Maksimov, Yu.M., A method for production of boron-containing composites for the alloying of steels, USSR Inventor’s Certificate 1830393, Byull. Izobret., 1993, no. 28.Google Scholar
  18. 18.
    Ziatdinov, M.Kh., Chromium combustion in a nitrogen coflow, Combust., Explos. Shock Waves, 2016, vol. 52, no. 4, pp. 418–426. doi 10.1134/S0010508216040055CrossRefGoogle Scholar
  19. 19.
    Pavlov, S.V., Snitko, Yu.P., and Plyukhin, S.B., Wastes and emissions in production of ferrosilicon, Elektrometallurgiya, 2001, no. 4, pp. 22–28.Google Scholar
  20. 20.
    Ziatdinov, M.Kh. and Shatokhin, I.M., Using ferrosilicon nitride of nitro-fesil grade in gate and spout components, Refract. Ind. Ceram., 2008, vol. 49, no. 5, pp. 383–387. doi 10.1007/s11148-009-9101-3CrossRefGoogle Scholar
  21. 21.
    Ziatdinov, M.Kh., Shatokhin, I.M., and Manasheva, E.M., SHS-produced ferrosilicon nitride NITRO-FESIL®TL as a new TAP-hole clay refractory component for blast furnaces, Refract. Ind. Ceram., 2014, vol. 54, no. 5, pp. 345–349. doi 10.1007/s11148-014-9608-0CrossRefGoogle Scholar
  22. 22.
    Ziatdinov, M.Kh. and Shatokhin, I.M., Experience in the development, production, and use of SHS-produced materials in metallurgy, Metallurgist, 2008, vol. 52, nos. 11–12, pp. 705–713.CrossRefGoogle Scholar
  23. 23.
    Ziatdinov, M.Kh. and Shatokhin, I.M., Self-propagating high-temperature synthesis of ferrosilicon nitride, Steel Transl., 2008, vol. 38, no. 1, pp. 39–44. doi 10.3103/S0967091208010130CrossRefGoogle Scholar
  24. 24.
    Nekrasov, E.A., Maksimov, Yu.M., Ziatdinov, M.Kh., and Shteinberg, A.S., Effect of capillary spreading on combustion wave propagation in a gas-free system, Combust. Explos. Shock Waves, 1978, vol. 14, no. 5, pp. 575–581. doi 10.1007/BF00789713CrossRefGoogle Scholar
  25. 25.
    Lepakova, O.K., Raskolenko, L.G., and Maksimov, Yu.M., The mechanism of phase and structure formation for the Ti–B–Fe system in a combustion wave, Combust. Explos. Shock Waves, 2000, vol. 36, no. 5, pp. 575–581. doi 10.1007/BF02699520CrossRefGoogle Scholar
  26. 26.
    Kirdyashkin, A.I., Maksimov, Yu.M., Ziatdinov, M.Kh., and Kitler, V.F., Interphase convection during contact interaction of metals in non-isothermal conditions, Combust. Explos. Shock Waves, 2000, vol. 36, no. 4, pp. 462–469. doi 10.1007/BF02699476CrossRefGoogle Scholar
  27. 27.
    Shaimardanov, K.R., Shatokhin, I.M., and Ziatdinov, M.Kh., Production and use of ferrosilicotitanium produced by self-propagating high-temperature synthesis, Steel Transl., 2014, vol. 44, no. 3, pp. 215–220. doi 10.3103/S0967091214030139CrossRefGoogle Scholar
  28. 28.
    Shatokhin, I.M., Shaimardanov, K.R., Bigeev, V.A., Ziatdinov, M.Kh., Shchegoleva, E.A., and Manashev, I.R., Production of ferrosilicotitanium for smelting pipe steels, Metallurgist, 2016, vol. 60, nos. 5–6, pp. 524–529. doi 10.1007/s11015-016-0325CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Tomsk State UniversityTomskRussia

Personalised recommendations