Skip to main content
Log in

SHS as a new approach to synthesizing hierarchical inorganic structures

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

We applied SHS method (also known as combustion synthesis) to create hierarchically structured porous hollow carbon nanospheres, mesoporous carbon nanosheets, and AlN stellar and multi-storey dendrite microcrystals. Our method utilizes the heat of combustion reaction for generating liquid and gaseous reactive species that promote the nucleation and growth of hierarchical microstructures. The studies on the electrochemical characteristics of carbon hierarchical structures revealed that these materials have potential application to fabrication of functional materials for use in supercapacitors and Li–S battery electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun, Y., Mayers, B., and Xia, Y., Metal nanostructures with hollow interiors, Adv. Mater., 2003, vol. 15, nos. 7–8, pp. 641–646. doi 10.1002/adma.200301639

    Article  Google Scholar 

  2. Nakashima, T. and Kimizuka, N., Interfacial synthesis of hollow TiO2 microspheres in ionic liquids, J. Am. Chem. Soc., 2003, vol. 125, no. 21, pp. 6386–6387. doi 10.1021/ja034954b

    Article  Google Scholar 

  3. Hou, Y.L., Kondoh, H., and Ohta, T., Self-assembly of Co nanoplatelets into spheres: Synthesis and characterization, Chem. Mater., 2005, vol. 17, no. 15, pp. 3994–3996. doi 10.1021/cm050409t

    Article  Google Scholar 

  4. Nie, Z.H., Petukhova, A., and Kumacheva, E., Properties and emerging applications of self-assembled structures made from inorganic nanoparticles, Nanotechnology, 2010, vol. 5, no. 1, pp. 15–25. doi 10.1038/nnano.2009.453

    Google Scholar 

  5. Zavala-Rivera, P., Channon, K, Nguyen, V., Sivaniah, E., Kabra, D., Friend, R.H., Nataraj, S.K., Al-Muhtaseb, S.A., Hexemer, A., Calvo, M.E., and Miguez, H., Collective osmotic shock in ordered materials, Nat. Mater., 2012, vol. 11, no. 1, pp. 53–57. doi 10.1038/nmat3179

    Article  Google Scholar 

  6. Lee, S.K., Park, S.G., Moon, J.H., and Yang, S.M., Holographic fabrication of photonic nanostructures for optofluidic integration, Lab on a Chip, 2008, vol. 8, no. 3, pp. 388–391. doi 10.1039/B913817J

    Article  Google Scholar 

  7. Park, J., Yoon, S., Kang, K., and Jeon, S., Antireflection behavior of multidimensional nanostructures patterned using a conformable elastomeric phase mask in a single exposure step, Small, 2010, vol. 6, no. 18, pp. 1981–1985. doi 10.1002/smll.201000275

    Article  Google Scholar 

  8. Park, J., Wang, S., Li, M., Ahn, C., Hyun, J.K., Kim, D.S., Kim, D.K., Rogers, J.A., Huang, Y., and Jeon, S., Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors, Nature Commun., 2012, vol. 3, pp. 916–918. doi 10.1038/ncomms1929

    Article  Google Scholar 

  9. Rogach, A.L., Kotov, N.A., Koktysh, D.S., Ostrander, J.W., and Ragoisha, G.A., Electrophoretic deposition of latex based 3D colloidal photonic crystals: A technique for rapid production of high-quality opals, Chem. Mater., 2000, vol. 12, no. 9, pp. 2721–2727. doi 10.1021/cm000274l

    Article  Google Scholar 

  10. Peinemann, K.V., Abetz, V., and Simon, P.F.W., Asymmetric superstructure formed in a block copolymer via phase separation, Nat. Mater., 2007, vol. 12, no. 6, pp. 992–996. doi 10.1038/nmat2038

    Article  Google Scholar 

  11. Whitesides, G.M. and Grzybowski, B., Self-assembly at all scales, Science, 2002, vol. 295, no. 5564, pp. 2418–2421. doi 10.1126/science.1070821

    Article  Google Scholar 

  12. Rauda, I.E., Buonsanti, R., Saldarriaga-Lopez, L.C., Bejauthrit, K., Schelhas, L.T., Stefik, M., Augustyn, V., Ko, J., Dunn, B., Wiesner, U., Milliron, D.J., and Tolbert, S.H., General method for the synthesis of hierarchical nanocrystal based mesoporous materials, ACS Nano, 2012, vol. 6, no. 7, pp. 6386–6399. doi 10.1021/nn302789r

    Article  Google Scholar 

  13. Dong, W.X., Zhao, G.L., Song, B., Xu, G., Zhou, J., and Han, G.R., Surfactant-free fabrication of CaTiO3 butterfly-like dendrite via a simple one-step hydrothermal route, Cryst. Eng. Commun., 2012, vol. 14, pp. 6990–6997. doi 10.1039/C2CE25472G

    Article  Google Scholar 

  14. Xie, B., Shi, H., Liu, G., Zhou, Y., Wang, Y., Zhao, Y., and Wang, D., Preparation of surface porous microcapsules templated by self-assembly of nonionic surfactant micelles, Chem. Mater., 2008, vol. 20, no. 9, pp. 3099–3104. doi 10.1021/cm7034618

    Article  Google Scholar 

  15. Ma, T.-Y., Cao, J.-L., Shao, G.-S., Zhang, X.-J., and Yuan, Z.-Y., Hierarchically structured squama-like cerium-doped titania: Synthesis, photoactivity, and catalytic CO oxidation, J. Phys. Chem. C, 2009, vol. 113, no. 38, pp. 16658–16667. doi 10.1021/jp906187g

    Article  Google Scholar 

  16. Yuan, Z.-Y. and Su, B.-L., Insights into hierarchically meso-macroporous structured materials, J. Mater. Chem., 2006, vol. 16, no. 7, pp. 663–677. doi 10.1039/B512304F

    Article  Google Scholar 

  17. Wang, L., Lin, J., and Zhang, X., Hierarchical microstructures self-assembled from polymer systems, Polymer, 2013, vol. 54, no.14, pp. 3427–3442. doi 10.1016/j.polymer.2013.03.054

    Article  Google Scholar 

  18. Campbell, M., Sharp, D.N., Harrison, M.T., Denning, R.G., and Turberfield, A.J., Fabrication of photonic crystals for the visible spectrum by holographic lithography, Nature, 2000, vol. 404, no. 2, pp. 53–56. doi 10.1038/35003523

    Google Scholar 

  19. Moon, J.H., Yang, S.M., Pine, D.J, and Chang, W.S., Multiple-exposure holographic lithography with phase shift, Appl. Phys. Lett., 2004, vol. 85, no. 18, pp. 4184–4186. doi 10.1063/1.1813644

    Article  Google Scholar 

  20. Lin, Y., Herman, P.R., and Darmawikarta, K., Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: Toward the massproduction of three-dimensional photonic crystals, Appl. Phys. Lett., 2005, vol. 86, no. 7, 071117(1–3). doi org/doi 10.1063/1.1865329

    Article  Google Scholar 

  21. Juodkazis, S., Mizeikis, V., and Misawa, K., Threedimensional microfabrication of materials by femtosecond lasers for photonics applications, J. Appl. Phys., 2009, vol. 106, no. 5, 051101. http://dx.doi.org/ doi 10.1063/1.3216462

    Article  Google Scholar 

  22. Jeon, S., Park, J.U., Cirelli, R., Yang, S., Heitzman, C.E., Braun, P.V., Kenis, P.J.A., and Rogers, J.A., Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, no. 34, pp. 12428–12433. doi 10.1073/pnas.0403048101

    Article  Google Scholar 

  23. Odom, T.W., Love, J.C., Wolfe, D.B., Paul, K.E., and Whitesides, G.M., Improved pattern transfer in soft lithography using composite stamps, Langmuir, 2002, vol. 18, pp. 5314–5320. doi 10.1021/la020169l

    Article  Google Scholar 

  24. Park, J., Park, J.H., Kim, E., Ahn, C.W., Jang, H.I., Rogers, J.A., and Jeon, S., Conformable solid-index phase masks composed of high-aspect-ratio micropillar arrays and their application to 3D nanopatterning, Adv. Mater., 2011, vol. 23, no. 7, pp. 860–864. doi 10.1002/adma.201003885

    Article  Google Scholar 

  25. Shiryaev, A.A., Thermodynamics of SHS processes: An advanced approach, Int. J. Self-Propag. High-Temp. Synth., 1995, vol. 4, no. 4, pp. 351–362.

    Google Scholar 

  26. Nersisyan, H.H., Joo, S.H., Yoo, B.U., Kim, D.Y., Lee, T.H., Eom, J.Y., Kim, C., Lee, K.H., and Lee, J.H., Combustion-mediated synthesis of hollow carbon nanospheres for high-performance cathode material in lithium-sulfur battery, Carbon, 2016, vol. 103, pp. 255–262. http://dx.doi.org/doi 10.1016/j.carbon. 2016.03.022

    Article  Google Scholar 

  27. Weast, R.C., Handbook of Chemistry and Physics, Boca Raton; CRC Press, 1981.

    Google Scholar 

  28. Yu, L.S., Hu, Z., Ma, Y.W., Huo, K.F., Chen, Y., Sang, H., Lin, W.W., and Lu, Y.N., Evolution of aluminum nitride nanostructures from nanoflower to thin film on silicon substrate by direct nitridation of aluminum precursor, Diamond Relat. Mater., 2007, vol. 16, no. 8, pp. 1636–1642. doi 10.1016/j.diamond.2007.02.008

    Article  Google Scholar 

  29. Zhang, F., Wu, Q., Wang, X., Liu, N., Yang, J., Hu, Y., Yu, L., Wang, W., Hu, Z., and Zhu, J., 6-Fold-symmetrical AlN hierarchical nanostructures: Synthesis and field-emission properties, J. Phys. Chem. C, 2009, vol. 113, pp. 4053–4058. doi 10.1021/jp811484r

    Article  Google Scholar 

  30. Yin, L.W., Bando, Y., Zhu, Y.C., Li, M.S., Li, Y.B., and Golberg, D., Growth and field emission of hierarchical single-crystalline wurtzite AlN nanoarchitectures, Adv. Mater., 2005, vol. 17, no. 1, pp. 110–114. doi 10.1002/adma.200400504

    Article  Google Scholar 

  31. He, J.H., Yang, R., Chueh, Y.L., Chou, L.J., Chen, L.J., and Wang, Z.L., Aligned AlN nanorods with multitipped surfaces: Growth, field-emission, and cathodoluminescence properties, Adv. Mater., 2006, vol. 18, no. 5, pp. 650–654. doi 10.1002/adma.200501803

    Article  Google Scholar 

  32. Nersisyan, H.H., Kim, D.Y., Kang, W., Han, B., and Lee, J.H., Experimental growth of new 6-fold symmetry patterned microcrystals of AlN: Equilibrium structures and growth mechanism, Cryst. Growth Des., 2016, vol. 16, no. 9, pp. 5305–5311. doi 10.1021/acs.cgd. 6b00829

    Article  Google Scholar 

  33. Kepler, J., The Six-Cornered Snowflakes, Oxford: Clarendon Press, 1966, pp. 1–96.

    Google Scholar 

  34. Haxhimali, T., Karma, A., Gonzales, F., and Rappaz, M., Orientation selection in dendritic evolution, Nat. Mater., 2006, vol. 5, pp. 660–664. doi 10.1038/nmat1693

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Lee.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nersisyan, H.H., Lee, J.H. SHS as a new approach to synthesizing hierarchical inorganic structures. Int. J Self-Propag. High-Temp. Synth. 26, 210–220 (2017). https://doi.org/10.3103/S1061386217030050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386217030050

Keywords

Navigation