Advertisement

Optical Memory and Neural Networks

, Volume 27, Issue 3, pp 147–151 | Cite as

Spectral Characteristics of a Finite 2D Ising Model

  • I. M. Karandashev
  • B. V. Kryzhanovsky
  • M. Yu. Malsagov
Article
  • 3 Downloads

Abstract

The paper gives the results of a numerical simulation of a two-dimensional Ising model built on finite lattices of dimension L = 50, 100, …, 500. Approximate analytical formulae for the spectral energy density are offered. Derived from Onsager’s solution with consideration of the finite size of the system, the formulae agree well with the simulation results.

Keywords:

spectral density 2D Ising model energy dispersion partition function internal energy critical point 

REFERENCES

  1. 1.
    Baxter, R.J., Exactly Solved Models in Statistical Mechanics, London: Academic, 1982.zbMATHGoogle Scholar
  2. 2.
    Stanley, H., Introduction to Phase Transitions and Critical Phenomena, Oxford: Clarendon Press, 1971.Google Scholar
  3. 3.
    Amit, D., Gutfreund, H., and Sompolinsky, H., Statistical mechanics of neural networks near saturation, Ann. Phys., 1987, vol. 173, pp. 30–67.CrossRefGoogle Scholar
  4. 4.
    van Hemmen, J.L. and Kuhn, R., Collective phenomena in neural networks, in Models of Neural Networks, Domany, E., van Hemmen, J.L., and Shulten, K., Eds., Berlin: Springer, 1992, pp. 1–105.Google Scholar
  5. 5.
    Martin, O.C., Monasson, R., and Zecchina, R., Statistical mechanics methods and phase transitions in optimization problems, Theor. Comput. Sci., 2001, vol. 265, nos. 1–2, pp. 3–67.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Karandashev, I., Kryzhanovsky, B., and Litinskii, L., Weighted patterns as a tool to improve the Hopfield model, Phys. Rev. E, 2012, vol. 85, p. 041925.CrossRefGoogle Scholar
  7. 7.
    Hinton, G.E., Osindero, S., and The, Y., A fast learning algorithm for deep belief nets, Neural Comput., 2006, vol. 18. pp. 1527–1554.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Wainwright, M.J., Jaakkola, T., and Willsky, A.S., A new class of upper bounds on the log partition function, IEEE Trans. Inform. Theory, 2005, vol. 51, no. 7, pp. 2313–2335.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Yedidia, J.S., Freeman, W.T., and Weiss, Y., Constructing free-energy approximations and generalized belief propagation algorithms, IEEE Trans. Inform. Theory, 2005, vol. 51, no. 7, pp. 2282–2312.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Blote, H.W.J., Shchur, L.N., and Talapov, A.L., The cluster processor: new results, Int. J. Mod. Phys. C, 1999, vol. 10, no. 6, pp. 1137–1148.CrossRefGoogle Scholar
  11. 11.
    Häggkvist, R., Rosengren, A., Lundow, P.H., Markström, K., Andren, D., and Kundrotas, P., On the Ising model for the simple cubic lattice, Adv. Phys., 2007, vol. 56, no. 5, pp. 653–755.CrossRefzbMATHGoogle Scholar
  12. 12.
    Lundow, P.H. and Markstrom, K., The critical behavior of the Ising model on the 4-dimensional lattice, Phys. Rev. E, 2009, vol. 80, p. 031104; arXiv:1202.3031v1.CrossRefGoogle Scholar
  13. 13.
    Lundow, P.H. and Markstrom, K., The discontinuity of the specific heat for the 5D Ising model, Nucl. Phys. B, 2015, vol. 895, pp. 305–318.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Dixon, J.M., Tuszynski, J.A., and Carpenter, E.J., Analytical expressions for energies, degeneracies and critical temperatures of the 2D square and 3D cubic Ising models, Physica A, 2005, vol. 349, pp. 487–510.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lyklema, J.W., Monte Carlo study of the one-dimensional quantum Heisenberg ferromagnet near T 1/4 0, Phys. Rev. B, 1983, vol. 27, no. 5, pp. 3108–3110.CrossRefGoogle Scholar
  16. 16.
    Marcu, M., Muller, J., and Schmatzer, F.-K., Quantum Monte Carlo simulation of the one-dimensional spin-S xxz model. II. High precision calculations for S 1/4, J. Phys. A, 1985, vol. 18, no. 16, pp. 3189–3203.CrossRefGoogle Scholar
  17. 17.
    Kasteleyn, P., Dimer statistics and phase transitions, J. Math. Phys., 1963, vol. 4, no. 2.Google Scholar
  18. 18.
    Fisher, M., On the dimer solution of planar Ising models, J. Math. Phys., 1966, vol. 7, no. 10.Google Scholar
  19. 19.
    Karandashev, Ya.M. and Malsagov, M.Yu., Polynomial algorithm for exact calculation of partition function for binary spin model on planar graphs, Opt. Mem. Neural Networks, 2017, vol. 26, no. 2. https://arxiv.org/abs/1611.00922.Google Scholar
  20. 20.
    Schraudolph, N. and Kamenetsky, D., Efficient exact inference in planar Ising models, in NIPS, 2008. https://arxiv.org/abs/0810.4401.Google Scholar
  21. 21.
    Onsager, L., Crystal statistics. I. A two-dimensional model with an order–disorder transition, Phys. Rev., 1944, vol. 65, nos. 3–4, pp. 117–149.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Yang, C.N., The spontaneous magnetization of a two-dimensional Ising model, Phys. Rev., 1952, vol. 65, p. 808.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kryzhanovsky, B., Malsagov, M., and Karandashev, I., Dependence of critical parameters of 2D Ising model on lattice size, Opt. Mem. Neural Networks, 2018, vol. 27, no. 1, pp. 10–22.CrossRefGoogle Scholar
  24. 24.
    Kryzhanovsky, B.V., Features of the spectral density of a spin system, Dokl. Math., 2018, vol. 97, no. 2, pp. 1–5.CrossRefzbMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Scientific Research Institute for System Analysis, Russian Academy of SciencesMoscowRussia
  2. 2.Peoples Friendship University of Russia (RUDN University)MoscowRussia

Personalised recommendations