Optical Memory and Neural Networks

, Volume 27, Issue 1, pp 46–52 | Cite as

Optical Analysis of Implants from the Dura Mater

  • P. E. Timchenko
  • E. V. Timchenko
  • L. T. Volova
  • M. A. Nosova
  • O. O. Frolov
  • N. K. Kiyko
  • N. V. Volov
Article
  • 2 Downloads

Abstract

Presents the results of the spectral analysis using the method of Raman scattering spectroscopy (RS) of dura mater (DM) samples, manufactured by technology “Lioplast” practised in the clinic in the area of atrophic processes at multiple gum recessions. The method of Fourier deconvolution and selection of the spectral profile by the method of least squares is used to increase the resolution and informativity of the spectrum. With the help of mathematical methods of separation of overlapping spectral contours, the main bands corresponding to the main components of the implants were found: amides, proteins, glycosaminoglycans, DNA/RNA. On the basis of the two-dimensional spectral analysis, the coefficients reflecting the composition of the dura mater with different methods of its treatment were introduced. It has been established that Raman spectroscopy can be used to evaluate implants from the dura mater.

Keywords

Raman spectroscopy dura mater biomaterial spectral analysis Fourier deconvolution modeling of the spectral contour 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Muslimov, S.A., Morfologicheskie aspekty regenerativnoy khirurgii (Morphological Aspects of Regenerative Surgery), Ufa: Bashkortostan, 2000.Google Scholar
  2. 2.
    Ganja, I.R., Recession of the Gums, in Diagnostics and Methods of Treatment: A Manual for Doctors, Ganja, I.R., Modina, T.N., and Khamadeeva, A.M., Eds., Samara: Commonwealth, 2007.Google Scholar
  3. 3.
    Ferraro, J.R. and Nakamoto, K., Introductory Raman Spectroscopy, San Diego: Academic, 1994.Google Scholar
  4. 4.
    Chen, H., Xu, P.W., and Broderick, N., In vivo spinal nerve sensing in MISS using Raman spectroscopy, Proc. SPIE, 2016, vol. 9802, p. 98021L. doi 10.1117/12.2218783CrossRefGoogle Scholar
  5. 5.
    Chen, J.L., Duan, L., Zhu, W., et al., J. Transl. Med., 2014, vol. 12, p. 88. https://doi.org/10.1186/1479-5876-12-88.CrossRefGoogle Scholar
  6. 6.
    Saxena, T., Deng, B., Stelzner, D., Hasenwinkel, J., and Chaiken, J., Raman spectroscopic investigation of spinal cord injury in a rat model, J. Biomed. Opt., 2011, vol. 16, no. 2, Article 027003.Google Scholar
  7. 7.
    Bazarnova, N.G., Karpova, E.V., Katrakov, I.B., et al., Methods of Studying Wood and Its Derivatives. Tutorial Text, Barnaul: Izd-vo Altai Gos. Univ., 2002 [in Russian].Google Scholar
  8. 8.
    Timchenko, E.V., Timchenko, P.E., Volova, L.T., Pershutkina, S.V., and Shalkovsky, P.Y., Optical analysis of aortic implants, Opt. Mem. Neural Networks, 2016, vol. 25, no. 3, pp. 192–197.CrossRefGoogle Scholar
  9. 9.
    Zhao, J., Lui, H., Mclean, D.I., and Zeng, H., Soc. Appl. Spectrosc., Bull., 2007, vol. 61, no. 11, pp. 1225–1232.CrossRefGoogle Scholar
  10. 10.
    Timchenko, E.V., Timchenko, P.E., Volova, L.T., Dolgushkin, D.A., Shalkovsky, P.Y., and Pershutkina, S.V., Detailed spectral analysis of decellularized skin implants, J. Phys.: Conf. Ser., 2016, vol. 737, no. 012050, pp. 1–4.Google Scholar
  11. 11.
    Timchenko, P.E., Timchenko, E.V., Pisareva, E.V., Vlasov, M.Yu., Red’kin, N.A., and Frolov, O.O., Spectral analysis of allogeneic hydroxyapatite powders, J. Phys.: Conf. Ser., 2017, vol. 784, p. 012060. doi 10.1088/1742-6596/784/1/012060Google Scholar
  12. 12.
    Thomas, G.J., Jr., Raman spectroscopy of viruses and protein-nucleic acid interactions, SPEX Speacker, 1976, vol. XXI, no.4.Google Scholar
  13. 13.
    Ellis, D.I., Cowcher, D.P., Ashton, L., O’Hagana, S., and Goodacreab, R., Illuminating disease and enlightening biomedicine: Raman spectroscopy as a diagnostic tool, Analyst (Cambridge, U. K.), 2013, vol. 138, p. 3871.CrossRefGoogle Scholar
  14. 14.
    Muntean, C.M., Halmagyi, A., Puiac, M.D., and Pavel, I., FT-Raman signatures of genomic DNA from plant tissues, Spectroscopy, 2009, vol. 23, pp. 59–70. doi 10.3233/SPE-2009-0375CrossRefGoogle Scholar
  15. 15.
    Benevides, J.M., Overman, S.A., and Thomas, G.J., J. Raman Spectrosc., 2005, vol. 36, pp. 279–299.CrossRefGoogle Scholar
  16. 16.
    Ruiz-Chica, A.J., Medina, M.A., Sanchez-Jimenez, F., and Ramirez, F.J., Characterization by Raman spectroscopy of conformational changes on guaninecytosine and adenine-thymine oligonucleotides induced by aminooxy analogues of spermidine, J. Raman Spectrosc., 2004, vol. 35, pp. 93–100.CrossRefGoogle Scholar
  17. 17.
    Chan, J.W., Taylor, D.S., Zwerdling, T., Lane, S.T., Ihara, K., and Huser, T., Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells, Biophys. J., 2006, vol. 90, pp. 648–656.CrossRefGoogle Scholar
  18. 18.
    Rudd, T.R.1, Hussain, R., Siligardi, G., and Yates, E.A., Raman and Raman optical activity of glycosaminoglycans, 2010, vol. 46, no. 23, pp. 4124–4126. doi 10.1039/c001535kGoogle Scholar
  19. 19.
    Motulsky, H.J. and Christopoulos, A., Fitting models to biological data using linear and nonlinear regression, in A Practical Guide to Curve Fitting, San Diego, CA: GraphPad Software Inc., 2003.Google Scholar
  20. 20.
    Lim, N.S., Hamed, Z., Yeow, C.H., Chan, C., and Huang, Z., Early detection of biomolecular changes in disrupted porcine cartilage using polarized Raman spectroscopy, J. Biomed. Opt., 2011, vol. 16, no. 1, p. 017003.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • P. E. Timchenko
    • 1
  • E. V. Timchenko
    • 1
  • L. T. Volova
    • 2
  • M. A. Nosova
    • 2
  • O. O. Frolov
    • 1
  • N. K. Kiyko
    • 1
  • N. V. Volov
    • 2
  1. 1.Samara National Research UniversitySamaraRussia
  2. 2.Samara State Medical UniversitySamaraRussia

Personalised recommendations