Advertisement

Journal of Machinery Manufacture and Reliability

, Volume 47, Issue 6, pp 479–487 | Cite as

Spatial Vibrations of a Pipeline with Elastically Deflecting Support under the Action of Internal Shock Pressure

  • R. F. Ganiev
  • M. A. Il’gamov
  • A. G. Khakimov
  • M. M. Shakir’yanovEmail author
Mechanics of Machines
  • 3 Downloads

Abstract

The spatial vibrations of a pipeline and the fluid inside it are considered with respect to the horizontal axis passing through supports under the action of internal shock pressure. The coupling between the internal pressure, curvature variation, and deformation of the pipeline circumference is taken into account. The bending and torsional deformations of the pipeline are divided into two sequential stages: inertial and inertial-elastic. The first support is rigid and fixed, and the second support may translate frictionlessly in the horizontal direction. Numerical modeling is performed. The analysis of the calculation results is given for special parameter values. The approximated analytical solutions are also presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Svetlitskii, V.A., Mekhanika truboprovodov i shlangov (Mechanics of Pipelines and Hoses), Moscow: Mashinostroenie, 1982.Google Scholar
  2. 2.
    Il’gamov, M.A., Kolebaniya uprugikh obolochek, soderzhashchikh zhidkost’ i gaz (Oscillations of Elastic Shells Containing Liquid and Gas), Moscow: Nauka, 1969.Google Scholar
  3. 3.
    Ilgamov, M.A., Staticheskie problemy gidroelastichnosti (Static Problems of Hydroelasticity), Moscow: Fizmatlit, 1998.Google Scholar
  4. 4.
    Chen, S.S., Forced vibration of a cantilevered tube conveying fluid, J. Acoust. Soc. Am., 1970, vol. 48, pp. 773–775.CrossRefGoogle Scholar
  5. 5.
    Ibrahim, R.A., Mechanics of pipes conveying fluids, ASME J. Press. Vessel Technol., 2010, vol. 132, pp. 1–32.CrossRefGoogle Scholar
  6. 6.
    Ganiev, R.F., Nizamov, Kh.N., and Derbukov, E.I., Volnovaya stabilizatsiya i preduprezhdenie avarii v truboprovodakh (Wave Stabilization and Prevention of Accidents in Pipe-Lines), Moscow: Mosk. Gos. Tekhnol. Univ., 1996.Google Scholar
  7. 7.
    Ganiev, R.F., Nelineinye rezonansy i katastrofy. Nadezhnost’, bezopasnost’ i besshumnost’ (Nonlinear Resonances and Catastrophes. Reliability, Safety, and Noiselessness), Moscow: Regulyar. Khaotich. Dinamika, 2013.Google Scholar
  8. 8.
    Païdoussis, M.P., The dynamics of clusters of flexible cylinders in axial flow: theory and experiments, J. Sound Vib., 1979, vol. 65, pp. 391–417.CrossRefzbMATHGoogle Scholar
  9. 9.
    Ilgamov, M.A., Tang, D.M., and Dowell, E.H., Flutter and forced response of a ñantilevered pipe: the influence of internal pressure and nozzle discharge, J. Fluids Struct., 1994, vol. 8, pp. 139–156.CrossRefGoogle Scholar
  10. 10.
    Tang, D.M., Ilgamov, M.A., and Dowell, E.H., Buckling and post-buckling behavior of a pipe subjected to internal pressure, J. Appl. Mech., 1995, vol. 62, no. 3, pp. 595–600.CrossRefGoogle Scholar
  11. 11.
    Il’gamov, M.A. and Mishin, V.N., Transverse oscillations of the pipe under the action of traveling waves in a liquid, Izv. Akad. Nauk, Mekh. Tverd. Tela, 1997, no. 1, pp. 181–192.Google Scholar
  12. 12.
    Mironov, M.A., Pyatakov, P.A., and Andreev, A.A., Forced flexural vibrations of a pipe with a liquid flow, Acoust. Phys., 2010, vol. 56, no. 5, pp. 739–747.CrossRefGoogle Scholar
  13. 13.
    McDonald, R.J. and Namchchivaya, N.Sri., Pipes conveying pulsating fluid near a 0:1 resonance: global bifurcations, J. Fluids Struct., 2005, vol. 21, pp. 665–687.CrossRefGoogle Scholar
  14. 14.
    Panda, L.N. and Kar, R.C., Nonlinear dynamics of a pipe conveying pulsating fluid with parametric and internal resonances, J. Nonlin. Dyn., 2007, vol. 49, pp. 9–30.CrossRefzbMATHGoogle Scholar
  15. 15.
    Panda, L.N. and Kar, R.C., Nonlinear dynamics of a pipe conveying pulsating fluid with combination, principal parametric and internal resonances, J. Sound Vib., 2008, vol. 309, pp. 375–406.CrossRefGoogle Scholar
  16. 16.
    Zhang, Y.L. and Chen, L.Q., Internal resonance of pipes conveying fluid in the supercritical regime, J. Nonlin. Dyn., 2012, vol. 67, pp. 1505–1514.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Zhang, Y.L. and Chen, L.Q., External and internal resonances of the pipe conveying fluid in the supercritical regime, J. Sound Vib., 2013, vol. 332, pp. 2318–2337.CrossRefGoogle Scholar
  18. 18.
    Chen, L.Q., Zhang, Y.L., Zhang, G.C., and Ding, H., Evolution of the double-jumping in pipes conveying fluid flowing at the supercritical speed, Int. J. Non-Lin. Mech., 2014, vol. 58, pp. 11–21.CrossRefGoogle Scholar
  19. 19.
    Zou, G.P., Cheraghi, N., and Taheri, F., Fluid-induced vibration of composite gas pipelines, J. Solids Struct., 2005, vol. 42, pp. 1253–1268.CrossRefGoogle Scholar
  20. 20.
    Modarres-Sadeghi, Y. and Païdoussis, M.P., Nonlinear dynamics of extensible fluid conveying pipes, supported at both ends, J. Fluids Struct., 2009, vol. 25, pp. 535–543.CrossRefGoogle Scholar
  21. 21.
    Ganiev, R.F., Il’gamov, M.A., Khakimov, A.G., and Shakir’yanov, M.M., Spatial vibrations of a pipeline in a continuous medium under the action of variable internal pressure, J. Mach. Manuf. Reliab., 2016, vol. 45, no. 6, pp. 485–494.CrossRefGoogle Scholar
  22. 22.
    Shakir’yanov, M.M., Spatial chaotic vibrations of a pipeline in a continuous medium under the action of variable internal pressure, Izv. Ufim. Nauch. Tsentra RAN, 2016, no. 4, pp. 35–47.Google Scholar
  23. 23.
    Ganiev, R.F., Il’gamov, M.A., Khakimov, A.G., and Shakir’yanov, M.M., Spatial aperiodic vibrations of the pipelines under transient internal pressure, J. Mach. Manuf. Reliab., 2017, vol. 46, no. 2, pp. 87–95.CrossRefGoogle Scholar
  24. 24.
    Ganiev, R.F. and Il’gamov, M.A., Pipeline elastic response to internal shock pressure, Dokl. Akad. Nauk, 2016, vol. 470, no. 2, pp. 162–165.MathSciNetGoogle Scholar
  25. 25.
    Il’gamov, M.A., Dynamics of a pipeline under the action of internal shock pressure, Mech. Solids, 2017, vol. 52, no. 6, pp. 663–674.CrossRefGoogle Scholar
  26. 26.
    Li, S., Karney, B.W., and Liu, G., FSI research in pipeline systems- a review of the literature, J. Fluids Struct., 2015, vol. 57, pp. 277–297.CrossRefGoogle Scholar
  27. 27.
    Kedrinskii, V.K., Gidrodinamika vzryva: eksperiment i modeli (Explosion Hydrodynamics: Experiment and Models), Novosibirsk: Sib. Otdel. RAN, 2000.Google Scholar
  28. 28.
    Ganiev, R.F. and Kononenko, V.O., Kolebaniya tverdykh tel (Oscillations of Solid Bodies), Moscow: Nauka, 1976.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • R. F. Ganiev
    • 1
  • M. A. Il’gamov
    • 1
    • 2
    • 3
  • A. G. Khakimov
    • 3
  • M. M. Shakir’yanov
    • 3
    Email author
  1. 1.Blagonravov Institute of Mechanical EngineeringRussian Academy of SciencesMoscowRussia
  2. 2.Bashkir State UniversityUfaRussia
  3. 3.Mavlyutov Institute of Mechanics, Ufa Research CenterRussian Academy of SciencesUfaRussia

Personalised recommendations