Journal of Machinery Manufacture and Reliability

, Volume 47, Issue 6, pp 516–524 | Cite as

Residual Strength, Microhardness, and Acoustic Properties of Low-Carbon Steel after Cyclic Loading

  • L. R. BotvinaEmail author
  • M. R. Tyutin
  • T. B. Petersen
  • V. P. Levin
  • A. P. Soldatenkov
  • D. V. Prosvirnin
Reliability, Strength, and Wear Resistance of Machines and Structures


The residual strength of low-carbon steel after cyclic loading before different numbers of cycles at various stress amplitudes is estimated. The correlation of the residual strength with the damage, microhardness of steel, and its acoustic properties including the characteristics of acoustic emission, propagation velocity, and attenuation coefficient of the ultrasound is specified. New criteria of diagnostics of the material state are proposed to reflect the degree of damage during cyclic loading.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Makhutov, N.A., Prochnost’ i bezopasnost’. Fundamental’nye i prikladnye issledovaniya (Strength and Safety. Fundamental and Applied Research), Novosibirsk: Nauka, 2008.Google Scholar
  2. 2.
    Salviato, M., Kirane, K., and Bazant, Z.P., Statistical distribution and size effect of residual strength of quasibrittle materials after a period of constant load, J. Mech. Phys. Solids, 2014, vol. 64, pp. 440–454.CrossRefGoogle Scholar
  3. 3.
    Ivanova, V.S., Gurevich, S.E., Kop’ev, I.M., et al., Ustalost’ i khrupkost' metallicheskikh materialov (Fatigue and Brittleness of Metallic Materials), Moscow: Nauka, 1968.Google Scholar
  4. 4.
    Troshchenko, V.T., Gryaznov, B.A., Strizhalo, V.A., et al., Metody issledovaniya soprotivleniya metallov deformirovaniyu i razrusheniyu pri tsiklicheskom nagruzhenii (Study Methods of the Metal Resistance to Deformation and Fracture under Cyclic Loading), Kiev: Naukova Dumka, 1974.Google Scholar
  5. 5.
    Philippidis, T.P. and Passipoularidis, V.V., Residual strength after fatigue in composites: theory vs. experiment, Int. J. Fatigue, 2007, no. 29, pp. 2104–2116.CrossRefGoogle Scholar
  6. 6.
    D’Amore, A., Giorgio, M., and Grassia, L., Modeling the residual strength of carbon fiber reinforced composites subjected to cyclic loading, Int. J. Fatigue, 2015, no. 78, pp. 31–37.CrossRefGoogle Scholar
  7. 7.
    Voznesenskii, A.S., Kutkin, Y.O., Krasilov, M.N., and Komissarov, A.A., Predicting fatigue strength of rocks by its interrelation with the acoustic quality factor, Int. J. Fatigue, 2015, no. 77, pp. 194–198.CrossRefGoogle Scholar
  8. 8.
    Botvina, L.R., Zharkova, N.A., Tyutin, M.R., Soldatenkov, A.P., Demina, Yu.A., and Levin, V.P., Development of plastic zones and damage during various types of loading, Zavod. Lab. Diagn. Mater., 2013, vol. 79, no. 5, pp. 46–55.Google Scholar
  9. 9.
    Nerazrushayushchii kontrol’: Spravochnik (Nondestructive testing: Handbook), Klyuev, V.V, Ed., Moscow: Mashinostroenie, 2006, vol. 7.Google Scholar
  10. 10.
    Lemaitre, J. and Chaboche, J.L., Mechanics of Solid Materials, Cambridge, UK: Cambridge Univ. Press, 1990.CrossRefzbMATHGoogle Scholar
  11. 11.
    Kachanov, L.M., Time of the rupture process under creep conditions, Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, 1958, no. 8, pp. 26–31.Google Scholar
  12. 12.
    Rabotnov, Yu.N., On the mechanism of long-term destruction, in Voprosy prochnosti materialov i konstruktsii (Strength Issues of Materials and Structures), Moscow: Akad. Nauk SSSR, 1959, pp. 5–7.Google Scholar
  13. 13.
    Botvina, L.R., Shebalin, P.N., and Oparina, I.B., The mechanism of temporal variations of seismicity and acoustic emission before macrofracture, Dokl. Akad. Nauk, 2001, vol. 376, no. 4, pp. 480–484.Google Scholar
  14. 14.
    Truell, R., Elbaum, Ch., and Chick, B.B., Ultrasonic Methods in Solid State Physics, Amsterdam: Elsevier, 1969.Google Scholar
  15. 15.
    Laszlo, A., Rose, J.H., and Mobley, C.J., Ultrasonic method to determine gas porosity in aluminium alloy castings: theory and experiment, Appl. Phys., 1985, vol. 59, no. 2, pp. 335–347.Google Scholar
  16. 16.
    Ivanova, V.S. and Gordienko, L.K., Changes in the physical properties of metals under cyclic loading, in Metallugiya, metallovedenie, fiziko-khimicheskie metody issledovaniya (Metallugy, Metal Science, Physical and Chemical Research Methods), Tr. Inst. Metall. Baikova, 1962, vol. 13, p. 63.Google Scholar
  17. 17.
    Hirao, M. and Ogi, H., Electromagnetic Acoustic Transducers, Springer Ser. in Measurement Science and Technology, Japan: Springer, 2017.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • L. R. Botvina
    • 1
    Email author
  • M. R. Tyutin
    • 1
  • T. B. Petersen
    • 2
  • V. P. Levin
    • 1
  • A. P. Soldatenkov
    • 1
  • D. V. Prosvirnin
    • 1
  1. 1.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia
  2. 2.Diapak Limited Liability CompanyMoscowRussia

Personalised recommendations