Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of Electrolytic-Plasma Nitrocarburizing on the Structural and Phase State of Ferrite-Pearlitic Steels

Abstract

Using transmission electron microscopy (TEM), phase composition and fine texture changes in the ferrite-pearlitic steels 0.18C–1Cr–3Ni–1Mo–Fe, 0.3C–1Cr–1Mn–1Si–Fe and 0.34C–1Cr–1Ni–1Mo–Fe due to electrolytic plasma nitrocarburizing has been studied in thin foils. The procedure of electrolytic-plasma enhanced nitrocarburizing has been performed by steel surface saturation with nitrogen and carbon in an aqueous solution at a temperature of 800–860°C for 5 min. All the steels under investigation have been studied before and after the nitrocarburizing procedure. In the initial state, the steels were discovered to be composed of a pearlitic and ferritic grain mixture. The nitrocarburizing procedure leads to the formation of modified layers. Thus, the greater is the amount of pearlite before nitrocarburizing, the thicker is the modified layer. Nitrocarburizing results in significant qualitative changes in the phase state and the steel structure. In the modified layer surface area alongside the matrix, the particles of other phases such as carbides, nitrides and carbonitrides occur. As the distance from the surface of a nitrocarburized sample increases, the phases of set and volume decrease, whereas the only carbide phase—cementite—occurs at the end of modified layer in the case of all the steels. After nitrocarburizing, the matrix of all the steels represents tempered lath and lamellar martensite. In the nitrocarburized layer surface zone, the volume fractions of lath and lamellar martensite depend on the initial steel state: the greater is the amount of pearlite in steel, the less is the amount of lath martensite; then a greater amount of lamellar martensite is formed. Such a dependence is not observed in the nitrocarburized layer central zone, whereas the volume fractions of lath and lamellar martensite at the end of the layer are close to each other.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    Boonruang, Ch., Kumpangkeaw, W., Sopunna, K., Chomsaeng, N., and Narksitipan, S., Effect of carburizing via current heating technique on the near surface microstructure of AISI 1020 steel, Chiang Mai J. Sci., 2012, vol. 39, no. 2, pp. 254–262.

  2. 2

    Bondarev, A.A., Tyurin, Yu.N., Pogrebnyak, A.D., Kolisnichenko, O.V., and Duda, I.M., Effect of pulsed plasma and electron beam processing of surface of wear-resistant coatings based on Ni on their functional properties, Uprochnyayushchie Tekhnol. Pokrytiya, 2012, no. 4, pp. 16–20.

  3. 3

    Dudareva, N.Yu., Effect of microarc oxidation modes on properties of formed surface, Vestnik Ufimsk. Gos. Aviats. Tekh. Univ., 2013, vol. 17, no. 3, pp. 217–222.

  4. 4

    Grin’, R.R., Gallyamova, R.F., Dudareva, N.Yu., Sirenko, A.A., and Musin, F.F., Structural features of modified layer obtained by microarc oxidation on AK12D alloy, Pis’ma o Mater., 2014, vol. 4, no. 3, pp. 175–178.

  5. 5

    Grigor’yants, A.G., Tret’yakov, R.S., and Funtikov, V.A., Improving quality of surface layers of parts obtained by laser additive technology, Tekhnol. Mashinostr., 2015, no. 10, pp. 68–73.

  6. 6

    Kovaleva, M., Tyurin, Yu., Vasilik, N., Kolisnichenko, O., Prozorova, M., Arseenko, M., Yapryntsev, M., Sirota, V., and Pavlenko, I., Effect of processing parameters on the microstructure and properties of WC–10Co–4Cr coatings formed by a new multi-chamber gas-dynamic accelerator, Ceram. Int., 2015, vol. 41, no. 10, pp. 15067–15074.

  7. 7

    Kiseleva, S.K., Zaynullina, L.I., and Dudareva, N.Y., Influence of the microstructure Al–12% Si alloy on the properties of the oxide layer formed with MAO, Mater. Sci. Forum, 2016, vol. 870, pp. 481–486.

  8. 8

    Muboyadzhyan, S.A. and Budinovskii, S.A., Ion-plasma technology: promising processes, coatings, equipment, Aviats. Mater. Tekhnol., 2017, no. 5, pp. 39–54.

  9. 9

    Yerokhin, A.L., Nie, X., Leyland, A., Matthews, A., and Dowey, S.J., Plasma electrolysis for surface engineering, Surf. Coat. Technol., 1999, vol. 122, nos. 2–3, pp. 73–93.

  10. 10

    Gupta, P., Tenhundfeld, G., Daigle, E.O., and Ryabkov, D., Electrolytic plasma technology: Science and engineering—an overview, Surf. Coat. Technol., 2007, vol. 201, no. 21, pp. 8746–8760.

  11. 11

    Belkin, P.N. and Kusmanov, S.A., Plasma electrolytic hardening of steels: review, Surf. Eng. Appl. Electrochem., 2016, vol. 52, no. 6, pp. 531–546.

  12. 12

    Rakhimyanov, Kh.M. and Eremina, A.S., Installation for chemical-thermal treatment in electrolyte plasma, Sb. Nauchn. Tr. Novosib. Gos. Tekh. Univ., 2006, no. 3 (45), pp. 141–144.

  13. 13

    Kulikov, I.S., Vashchenko, S.V., and Kamenev, A.Ya., Elektrolitno-plazmennaya obrabotka materialov (Electrolytic-Plasma Processing of Materials), Minsk: Belaruskaya Navuka, 2010, 232 p.

  14. 14

    Kusmanov, S.A., Shadrin, S.Yu., and Belkin, P.N., Carbon transfer from aqueous electrolytes to steel by anode plasma electrolytic carburizing, Surf. Coat. Technol., 2014, vol. 258, pp. 727–733.

  15. 15

    Alfereva, T.I., Belkin, P.N., and Zhirov, A.V., Rapid cementation of steel from a coating under anodic electrolytic heating conditions, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2015, vol. 9, no. 2, pp. 313–316.

  16. 16

    Belkin, P.N., Kusmanov, S.A., Dyakov, I.G., Komissarova, M.R., and Parfenyuk, V.I., Anode plasma electrolytic carburizing of commercial pure titanium, Surf. Coat. Technol., 2016, vol. 307, pp. 1303–1309.

  17. 17

    Skakov, M., Rakhadilov, B., Batyrbekov, E., and Scheffner, M., Change of structure and mechanical properties of R6M5 steel surface layer at electrolytic-plasma nitriding, Adv. Mater. Res., 2014, vol. 1040, pp. 753–758.

  18. 18

    Kusmanov, S.A., Smirnov, A.A., Silkin, S.A., and Belkin, P.N., Modification of low-alloy steel surface by plasma electrolytic nitriding, J. Mater. Eng. Perform., 2016, vol. 25, no. 7, pp. 2576–2582.

  19. 19

    Belkin, P.N. and Kusmanov, S.A., Plasma electrolytic nitriding of steels, J. Surf. Invest., 2017, vol. 11, no. 4, pp. 767–789.

  20. 20

    Kusmanov, S.A., Kusmanova, Yu.V., Naumov, A.R., and Belkin, P.N., Features of anode plasma electrolytic nitrocarburising of low carbon steel, Surf. Coat. Technol., 2015, vol. 272, pp. 149–157.

  21. 21

    Kusmanov, S.A., Dyakov, I.G., Kusmanova, Yu.V., and Belkin, P.N., Surface modification of low-carbon steels by plasma electrolytic nitrocarburising, Plasma Chem. Plasma Process., 2016, vol. 36, no. 5, pp. 1271–1286.

  22. 22

    Kusmanov, S.A., Grishina, E.P., Belkin, P.N., Kusmanova, Y.V., and Kudryakova, N.O., Raising the corrosion resistance of low-carbon steels by electrolytic-plasma saturation with nitrogen and carbon, Met. Sci. Heat Treat., 2017, vol. 59, nos. 1–2, pp. 117–123.

  23. 23

    Suminov, I.V., Belkin, P.N., Epel’fel’d, A.V., Lyudin, V.B., Krit, B.L., and Borisov, A.M., Plazmenno-elektroliticheskoe modifitsirovanie poverkhnosti metallov i splavov (Plasma-Electrolytic Surface Modification of Metals and Alloys), Moscow: Tekhnosfera, 2011, vol. 1.

  24. 24

    Popova, N.A., Zhurerova, L.G., Nikonenko, E.L., and Skakov, M.K., Effect of plasma electrolytic nitrocarburizing on phase composition of 0.3C–1Mn–1Si–Fe steel, Inorg. Mater.: Appl. Res., 2017, vol. 8, no. 1, pp. 130–135.

  25. 25

    Popova, N.A., Erygina, L.A., Nikonenko, E.L., Skakov, M.K., Koneva, N.A., and Kozlov, E.V., Phase transformations in 0.34C–1Cr–1Ni–1Mo–Fe steel under the action of electrolytic plasma nitrocarburizing, Bull. Russ. Acad. Sci.: Phys., 2017, vol. 81, no. 3, pp. 354–356.

  26. 26

    Popova, N.A., Nikonenko, E.L., Erbolatova, G.U., Kalashnikov, M.P., and Skakov, M.K., Phase transformations in 40KhNYu alloy at plasma chemical-thermal treatment, Fundam. Probl. Sovrem. Materialoved., 2018, vol. 15, no. 3, pp. 339–347.

  27. 27

    Kozlov, E.V., Popova, N.A., Kabanina, O.V., Klimashin, S.I., and Gromov, V.E., Evolyutsiya fazovogo sostava, defektnoi struktury, vnutrennikh napryazhenii i pereraspredelenie ugleroda pri otpuske litoi konstruktsionnoi stali (Evolution of Phase Composition, Defective Structure, Internal Stresses and Redistribution of Carbon during Tempering of Cast Structural Steel), Novokuznetsk: Sib. Gos. Ind. Univ., 2007.

  28. 28

    Ivanov, Yu.F. and Kozlov, E.V., Bulk and surface quenching of structural steel: Morphological analysis of the structure, Russ. Phys. J., 2002, vol. 45, no. 3, pp. 209–231.

Download references

Author information

Correspondence to N. A. Popova or E. L. Nikonenko or A. V. Nikonenko or V. E. Gromov or O. A. Peregudov.

Additional information

Translated by O. Polyakov

About this article

Verify currency and authenticity via CrossMark

Cite this article

Popova, N.A., Nikonenko, E.L., Nikonenko, A.V. et al. Effect of Electrolytic-Plasma Nitrocarburizing on the Structural and Phase State of Ferrite-Pearlitic Steels. Steel Transl. 49, 671–677 (2019). https://doi.org/10.3103/S0967091219100127

Download citation

Keywords:

  • nitrocarburizing
  • modified layer
  • steel
  • ferrite
  • pearlite
  • lath and lamellar martensite
  • phase composition
  • carbide
  • nitride
  • carbonitride