Steel in Translation

, Volume 49, Issue 7, pp 460–465 | Cite as

Assessing the Size of Phase Inclusions in Ferrochrome Alloys by Means of Ultrasound Resonance

  • A. V. Berestov
  • E. M. Kudryavtsev
  • S. P. Martynenko
  • I. I. Rod’koEmail author


In the strategic research program on closing the nuclear fuel cycle with fast neutron reactors, nonstandard equipment must be introduced in the fuel chambers for nondestructive monitoring of materials that are critical to fast neutron reactors. In particular, ferrochromium alloys are regarded as promising for the fuel-element casings of fast neutron reactors. An unexpected effect is observed in ultrasonic spectroscopy of cylindrical ferrochromium-alloy samples by the internal-friction method, in a narrow temperature range close to 550 K on cooling at around 0.2 K/s: coupled oscillations are seen in samples with a nonuniform temperature distribution over the radius if the temperature range includes the material’s point of magnetic phase transition (Curie point). Such a sample may be regarded as a complex oscillatory system consisting of a peripheral (cooler) region and a central region in different magnetic states. Mechanical stress is present at the pulsating boundary of those regions. Such anomalous oscillation is associated with the influence of dynamic oscillatory stress on the formation of carbonitride inclusions in heat treatment and on the magnetic phase transitions in those inclusions. A theoretical description of this effect is proposed. By recording the parameters of the coupled oscillations, the size of the phase inclusions that form may be estimated. By means of these resonant oscillations, in combination with the traditional internal-friction method, metastable phase inclusions appearing in intermediate stages of structure formation in the material may be detected, and their dimensions may be estimated. This will be of great value in the primary nondestructive testing of highly irradiated alloy samples in the fuel chambers when optimizing the alloy composition for the fuel-element casings in fast neutron reactors.


ultrasonic resonances coupled oscillations ferrochromium alloys internal friction phase inclusions phase transitions dynamic oscillatory stress 



We thank E.G. Belendryasova for digital analysis of the alloy microstructure.


Financial support for provided by the Russian Ministry of Science and Higher Education (contract no. 14.578.21.0258, project identifier RFMEFI57817X0258).


  1. 1.
    Karzov, G.P., Kudryavtsev, A.S., Markov, V.G., Grishmanovskaya, R.N., Trapeznikov, Yu.M., and Anan’eva, M.A., Development of structural materials for nuclear power plants on fast neutrons with a sodium coolant: design and choice of materials for fast reactors with sodium heat-transfer agent, Vopr. Materialoved., 2015, no. 2, pp. 17–23.Google Scholar
  2. 2.
    Kudryavtsev, E.M. and Martynenko, S.P., Investigation of structural and phase transformations in chrome-iron alloys by ultrasonic spectroscopic method, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 1997, no. 7, pp. 38–42.Google Scholar
  3. 3.
    Baranov, V.M. and Kudryavtsev, E.M., Application of ultrasonic resonance method for control of small sized items, Defektoskopiya, 1979, no. 9, pp. 25–32.Google Scholar
  4. 4.
    Kuz’min, E.V., Petrakovskii, G.A., and Zavadskii, Z.A., Fizika magnitouporyadochennykh veshchestv (Physics of Magnetically Ordered Materials), Novosibirsk: Nauka, 1976.Google Scholar
  5. 5.
    Postnikov, V.S., Vnutrennee trenie v metallakh (Internal Friction in Metals), Moscow: Metallurgiya, 1974.Google Scholar
  6. 6.
    Rabotnov, Yu.N., Mekhanika deformiruemogo tverdogo tela (Mechanics of Deformable Solids), Moscow: Nauka, 1988.Google Scholar
  7. 7.
    El’sgol’ts, L.E., Differentsial’nye uravneniya i variatsionnoe ischislenie (Differential Equations and Variational Calculus), Moscow: Nauka, 1969.Google Scholar
  8. 8.
    Apaev, B.A., Magnitnyi fazovyi analiz (Magnet Phase Analysis), Moscow: Metallurgiya, 1976.Google Scholar
  9. 9.
    Metallovedenie i termicheskaya obrabotka stali. Tom 2. Osnovy termicheskoi obrabotki (Metallurgy and Heat Treatment of Steel, Vol. 2: Basics of Heat Treatment), Bershtein, M.L. and Rakhshtadt, A.G., Eds., Moscow: Metallurgiya, 1983.Google Scholar
  10. 10.
    Sully, A.H. and Brandes, E.A., Chromium, London: Butterworth, 1967.Google Scholar
  11. 11.
    Trefilov, V.I., Mil’man, V.I., and Firstov, S.A., Fizicheskie osnovy prochnosti tugoplavkikh metallov (Physical Basics of Strength of Refractory Metals), Kiev: Naukova Dumka, 1975.Google Scholar
  12. 12.
    Maslyuk, V.A., Yakovenko, R.V., Gripachevskii, A.N., and Baglyuk, G.A., Structure and properties of sintered chromium carbide steels based on the Fe–Cr–C system, Vopr. Materialoved., 2015, no. 2, pp. 9–17.Google Scholar
  13. 13.
    Krishtal, M.A. and Golovin, S.A., Vnutrennee trenie i struktura metallov (Internal Friction and Structure of Metals), Moscow: Metallurgiya, 1976.Google Scholar
  14. 14.
    Golovin, S.A. and Golovin, I.S., Mechanical spectroscopy of Snoek type relaxation, Met. Sci. Heat Treat., 2012, vol. 54, nos. 5–6, pp. 208–216.CrossRefGoogle Scholar
  15. 15.
    Tsukanov, V.V. and Ziza, A.I., Improvement of heat treatment modes for steel grades 35KhN3MFA and 38KhN3MFA in order to increase resistance to brittle fracture. Investigation of retained austenite transformation, Vopr. Materialoved., 2015, no. 2, pp. 1–9.Google Scholar
  16. 16.
    Magalas, L.B. and Malinowski, T., Measurement techniques of the logarithmic decrement, Solid State Phenom., 2003, vol. 89, pp. 247–260.CrossRefGoogle Scholar
  17. 17.
    Kokorin, V.V. and Osipenko, I.A., Peculiar features of the magnetic properties of decomposed Cr–Fe solid solutions, Phys. Met. Metallogr., 1980, vol. 50, no. 6, pp. 42–46.Google Scholar
  18. 18.
    Magalas, L.B., Mechanical spectroscopy—fundamentals, Solid State Phenom., 2003, vol. 89, pp. 1–22.CrossRefGoogle Scholar
  19. 19.
    Magalas, L.B. and Majewski, M., Ghost internal friction peaks, ghost asymmetrical peak broadening and narrowing: misunderstandings, consequences and solution, Mater. Sci. Eng., A, 2009, vols. 521–522, pp. 384–388.CrossRefGoogle Scholar
  20. 20.
    Magalas, L.B. and Majewski, M., Recent advances in determination of the logarithmic decrement and the resonant frequency in low-frequency mechanical spectroscopy, Solid State Phenom., 2008, vol. 137, pp. 15–20.CrossRefGoogle Scholar
  21. 21.
    Magalas, L.B. and Darinskii, B.M., Mechanical spectroscopy and relaxation phenomena in solids, Solid State Phenom., 2008, vol. 115, pp. 1–6.CrossRefGoogle Scholar
  22. 22.
    Magalas, L.B., Determination of the logarithmic decrement in mechanical spectroscopy, Solid State Phenom., 2006, vol. 115, pp. 7–14.CrossRefGoogle Scholar
  23. 23.
    Golovin, I.S. and Rivière, A., Mechanical spectroscopy of the Fe–25Al–Cr alloys in medium temperature range, Solid State Phenom., 2008, vol. 137, pp. 99–108.CrossRefGoogle Scholar
  24. 24.
    Magalas, L.B., Mechanical spectroscopy—fundamentals, Solid State Phenom., 2003, vol. 89, pp. 1–22.CrossRefGoogle Scholar
  25. 25.
    Magalas, L.B., Golovin, S.A., and Darinskii, B.M., Mechanical spectroscopy, internal friction and relaxation phenomena in solids—suggested reading, Solid State Phenom., 2006, vol. 115, pp. 15–24.CrossRefGoogle Scholar
  26. 26.
    Yoshida I., Sugai T., Tani S., Motegi M., Minamida K., and Hayakawa H., Automation of internal friction measurement apparatus of inverted torsion pendulum type, J. Phys. E: Sci. Instrum., 1981, vol. 14, no. 10, pp. 1201–1206.CrossRefGoogle Scholar
  27. 27.
    Agrež, D., A frequency domain procedure for estimation of the exponentially damped sinusoids, IEEE Trans. Instrum. Meas., 2009, vols. 1–3, pp. 1295–1300.Google Scholar
  28. 28.
    Golovin, S.A., Pal’-Val’, P.P., and Mozgovoi, A.V., Contemporary problems of mechanical spectroscopy, Usp. Fiz. Met., 2013, vol. 14, no. 3, pp. 259–273.CrossRefGoogle Scholar
  29. 29.
    Magalas, L.B. and Majewski, M., Toward high-resolution mechanical spectroscopy HRMS. Resonant frequency—Young’s modulus, Solid State Phenom., 2012, vol. 184, pp. 473–478.CrossRefGoogle Scholar
  30. 30.
    Duda, K., Magalas, L.B., Majewski, M., and Zieliński, T.P., DFT-based estimation of damped oscillation parameters in low-frequency mechanical spectroscopy, IEEE Trans. Instrum. Meas., 2011, vol. 60, no. 11, pp. 3608–3618.CrossRefGoogle Scholar
  31. 31.
    Rubianes, J., Magalas, L.B., Fantozzi, G., and San Juan, J., The Dislocation-Enhanced Snoek Effect (DESE) in high-purity iron doped with different amounts of carbon, J. Phys. C: Solid State Phys., (Paris), 1987, vol. 48, (C-8), pp. 185–190.Google Scholar
  32. 32.
    Etienne, S., Elkoun, S., David, L., and Magalas, L.B., Mechanical spectroscopy and other relaxation spectroscopies, Solid State Phenom., 2003, vol. 89, pp. 31–66.CrossRefGoogle Scholar
  33. 33.
    Magalas, L.B. and Piłat, A., Zero-point drift in resonant mechanical spectroscopy, Solid State Phenom., 2006, vol. 115, pp. 285–292.CrossRefGoogle Scholar
  34. 34.
    Magalas, L.B., Dufresne, J.F., and Moser, P., The Snoek–Köster relaxation in iron, J. Phys. C: Solid State Phys., 1981, vol. 42, no. 5, pp. 127–132.Google Scholar
  35. 35.
    Magalas, L.B., Mechanical spectroscopy, internal friction and ultrasonic attenuation: collection of works, Mater. Sci. Eng., A, 2009, vols. 521–522, pp. 405–415.CrossRefGoogle Scholar
  36. 36.
    Baranov, V.M., Kudryavtsev, E.M., and Martynenko, S.P., Features of non-linear resonance oscillations of samples in the area of non-diffuse phase translations of materials, Akust. Zh., 1990, vol. 36, no. 3, pp. 389–394.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • A. V. Berestov
    • 1
  • E. M. Kudryavtsev
    • 1
  • S. P. Martynenko
    • 1
  • I. I. Rod’ko
    • 1
    Email author
  1. 1.Moscow National Research Nuclear Institute (MEPhI)MoscowRussia

Personalised recommendations