Steel in Translation

, Volume 47, Issue 12, pp 768–771 | Cite as

Thermodynamic Modeling of Metal Desulfurization with Boron-Containing Slags of the CaO–SiO2–MgO–Al2O3–B2O3 System

  • V. A. Salina
  • A. V. Sychev
  • V. I. Zhuchkov
  • A. A. Babenko
Article
  • 1 Downloads

Abstract

In thermodynamic modeling of the desulfurization of steel by CaO–SiO2–MgO–Al2O3–B2O3 slag on the basis of HSC 6.12 Chemistry software (Outokumpu), the influence of the temperature (1500–1700°C), the slag basicity (2–5), and the B2O3 content (1–4%)1 on the desulfurization is analyzed. It is found that the sulfur content is reduced with increase in the temperature from 1500 to 1700°C, within the given range of slag basicity. At 1600°C, the sulfur content in the metal is 0.0052% for slag of basicity 2; at 1650°C, by contrast, its content is 0.0048%. Increase in slag basicity from 2 to 5 improves the desulfurization, which increases from 80.7 to 98.7% at 1600°C. If the B2O3 content in the slag rises, desulfurization is impaired. At 1600°C, the sulfur content in the metal may be reduced to 0.0052 and 0.0098% when using slag of basicity 2 with 1 and 4% B2O3, respectively; in the same conditions but with slag of basicity 5, the corresponding values are 0.00036 and 0.00088%, respectively. Note that desulfurization is better for slag without B2O3. According to thermodynamic modeling, metal with 0.0039 and 0.00019% S is obtained at 1600°C when using slag of basicity 2 and 5, respectively, that contains no B2O3. The results obtained by thermodynamic modeling for the desulfurization of metal by CaO–SiO2–MgO–Al2O3–B2O3 slag of basicity 2–5 in the range 1500–1700°C are consistent with experimental data and may be used in improving the desulfurization of steel by slag that contains boron.

Keywords

thermodynamic modeling boron-containing slag steel desulfurization slag basicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yavoiskii, V.I., Kryakovskii, Yu.V., Grigor’ev, V.P., Nechkin, Yu.M., Kravchenko, V.F., and Borodin, D.I., Metallurgiya stali. Uchebnik dlya vuzov (Metallurgy of Steel: Manual for Higher Education Institutions), Moscow: Metallurgiya, 1983.Google Scholar
  2. 2.
    Chuiko, N.M. and Chuiko, A.N., Teoriya i tekhnologiya elektroplavki stali (Theory and Technology of Electric Steel Melting), Kiev–Donetsk: Golovnoe Izd., 1983.Google Scholar
  3. 3.
    Bigeev, A.M. and Bigeev, V.A., Metallurgiya stali. Teoriya i tekhnologiya plavki stali. Uchebnik dlya vuzov (Metallurgy of Steel. Theory and Technology of Steel Melting. Manual for Higher Education Institutions), Magnitogorsk: Magnitogorsk. Gos. Tekh. Univ., 2000.Google Scholar
  4. 4.
    Kablukovskii, A.F., Proizvodstvo elektrostali i ferrosplavov (Production of Electric Steel and Ferroalloys), Moscow: Akademkniga, 2003.Google Scholar
  5. 5.
    Dyudkin, D.A. and Kisilenko, V.V., Proizvodstvo stali. Vnepechnaya metallurgiya stali (Steel Production. Outof-Furnace Metallurgy of Steel), Moscow: Teplotekhnik, 2010, vol.3.Google Scholar
  6. 6.
    Novikov, V.A., Tsarev, V.A., Novikov, S.V., Afanas’ev, S.Yu., and Batov, Yu.M., Thermodynamic and kinetic peculiarities of desulfurization, Russ. Metall. (Engl. Transl.), 2013, vol. 2013, no. 6, pp. 420–424.CrossRefGoogle Scholar
  7. 7.
    Sokolov, G.A., Vnepechnoe rafinirovanie stali (Out-of-Furnace Refining of Steel), Moscow: Metallurgiya, 1977.Google Scholar
  8. 8.
    Wang, H., Zhang, T., Zhu, H., Li, G., Yan, Y., and Wang, J., Effect of B2O3 on melting temperature, viscosity and desulfurization capacity of CaO-based refining flux, ISIJ Int., 2011, vol. 51, no. 5, pp. 702–706.CrossRefGoogle Scholar
  9. 9.
    Tursunov, N.K., Semin, A.E., and Sanokulov, E.A., Research of dephosphorization and desulfurization processes in smelting of 20GL steel in an induction crucible furnace with further processing in a ladle using rare earth metals, Chern. Met., 2017, no. 1, pp. 33–40.Google Scholar
  10. 10.
    Akberdin, A.A., Kim, A.S., and Esenzhulov, A.B., Theoretical evaluation and industrial verification of smelting technology for refined ferrochromium using low-melting fluxes, Trudy mezhdunarodnoi nauchnoi konferentsii posvyashchennoi 110-letiyu so dnya rozhdeniya akademika A.M. Samarina “Fiziko-khimicheskie osnovy metallurgicheskikh protsessov” (Proc. Int. Sci. Conf. Dedicated to the 110th Anniversary of Academician A.M. Samarin “Physical and Chemical Founda-tions of Metallurgical Processes”), Moscow: Inst. Metall. Materialoved., Ross. Akad. Nauk, 2012, p.69.Google Scholar
  11. 11.
    Vozchikov, A.P., Demidov, K.N., Smirnov, L.A., et al., Development of boron-containing high-magnesia fluxes of rational composition for steelmaking and experimental evaluation of their physico-chemical and refining properties, Chern. Metall., Byull. Nauchno-Tekh. Ekon. Inf., 2014, no. 11, pp. 35–38.Google Scholar
  12. 12.
    Zhu, Z.X., Li, G.R., Wang, H.M., Dai, Q.X., Li, B., J. Univ. Sci. Technol. Beijing, 2006, vol. 28, p.725.Google Scholar
  13. 13.
    Zharmenov, A.A., Mukanov, D.M., Akberdin, A.A., et al., Complex processing of mineral raw materials in Kazakhstan, in Bor v protsessakh podgotovki i metallurgicheskoi pererabotki zhelezorudnogo syr’ya (Use of Boron in the Ppreparation and Metallurgical Processing of Iron Ore), Astana: Foliant, 2003, vol. 3, pp. 3–87.Google Scholar
  14. 14.
    Kim, G.H. and Sohn, I., Role of B2O3 on the viscosity and structure in the CaO–Al2O3–Na2O-based system, Metall. Mater. Trans. B, 2014, vol. 45, no. 1, pp. 86–95.CrossRefGoogle Scholar
  15. 15.
    Kim, Y. and Morita, K., Relationship between molten oxide structure and thermal conductivity in the CaO–SiO2–B2O3 system, ISIJ Int., 2014, vol. 54, no. 9, pp. 2077–2083.CrossRefGoogle Scholar
  16. 16.
    Sychev, A.V., Salina, V.A., Babenko, A.A., and Zhuchkov, V.I., Distribution of boron between oxide slag and steel, Steel Transl., 2017, vol. 47, no. 2, pp. 105–107.CrossRefGoogle Scholar
  17. 17.
    Wan, Y. and Chen, W., Effect of boron content on the microstructure and magnetic properties of non-oriented electrical steels, J. Wuhan Univ. Technol. Mater. Sci. Ed., 2015, vol. 30, no. 3, pp. 574–579.CrossRefGoogle Scholar
  18. 18.
    Velichko, O.G., Kamkina, L.V., Manidin, V.S., Isava, L.E., and Chervonii, I.F., The role of boron in processes of obtaining of steel of high quality and the problem of its determination, Teor. Prakt. Metall., 2015, nos. 1–2, pp. 104–108.Google Scholar
  19. 19.
    Bogdanov, N.A., Sychkov, A.B., Derevyanchenko, I.V., Kucherenko, O.L., Oleinik, A.A., Parusov, V.V., Starov, R.V., and Nesterenko, A.M., Development and introduction of a technology for making boron-bearing steels, Metallurgist, 1999, vol. 43, nos. 1–2, pp. 71–75.CrossRefGoogle Scholar
  20. 20.
    Zhuchkov, V.I., Sychev, A.V., Akberdin, A.A., Trofimov, E.A., Salina, V.A., and Babenko, A.A., Research and improvement of the process of obtaining of complex boron-containing ferroalloys, Materialy XVI mezhdunarodnoi konferentsii “Sovremennye problemy elektrometallurgii stali” (Proc. XVI Int. Conf. “Modern Problems of Electrometallurgy of Steel”), Chelyabinsk: Yuzh.-Ural. Gos. Univ., 2015, part. 2, pp. 191–196.Google Scholar
  21. 21.
    Zhuchkov, V.I., Leont’ev, L.I., Babenko, A.A., Sychev, A.V., and Akberdin, A.A., Advanced directions of using boron-containing materials in ferrous metallurgy, Trudy XX Mendeleevskogo s”ezda po obshchei i prikladnoi khimii (Proc. XX Mendeleev Congr. on General and Applied Chemistry), Yekaterinburg: Ural. Otd., Ross. Akad. Nauk, 2016, vol. 3, pp.73.Google Scholar
  22. 22.
    Roine, A., Outokumpu HSC Chemistry for Windows, Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database, Version 5.1, Pori: Outokumpu Res. Inf. Serv., 2002.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • V. A. Salina
    • 1
  • A. V. Sychev
    • 1
  • V. I. Zhuchkov
    • 1
  • A. A. Babenko
    • 1
  1. 1.Institute of Metallurgy, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations