Advertisement

Recombinant Histones as an Instrument for the Delivery of Nucleic Acids into Eukaryotic Cells

  • M. V. ZinovyevaEmail author
  • A. V. Sass
  • A. V. Vvedensky
  • V. K. Potapov
  • L. G. Nikolaev
  • E. D. Sverdlov
EXPERIMENTAL WORKS
  • 2 Downloads

Abstract

Naturally occurring positively charged proteins can be promising carriers for nucleic acid transport in gene therapy. The most attractive alternative among them is histones. In this work, we describe expression and purification of recombinant human histones H2A and H2B and of chimeric histone H2A with HIV-1 TAT fragment (TAT-peptide). The proposed method of purification of histone proteins can significantly reduce the content of bacterial endotoxins in the target preparation, which makes it possible to use these proteins in in vivo experiments. The transfection ability of plasmid DNA complexes with core histones H2A and H2B and the chimeric histone was demonstrated. A highly specific and efficient transfection of human HT1080 cell line with the use of histones H2A and H2B was detected, whereas transfection by plasmid DNA complexes with chimeric H2A-TAT protein was observed for many cell lines.

Keywords:

nonviral delivery of nucleic acids into cell recombinant histones purification TAT-peptide endotoxin 

Notes

REFERENCES

  1. 1.
    Bakhtiar, A., Sayyad, M., Rosli, R., Maruyama, A., and Chowdhury, E.H., Intracellular delivery of potential therapeutic genes: prospects in cancer gene therapy, Curr. Gene Ther., 2014, vol. 14, pp. 247–257.CrossRefGoogle Scholar
  2. 2.
    Nayerossadat, N., Maedeh, T., and Ali, P.A., Viral and non-viral delivery systems for gene delivery, Adv. Biomed. Res., 2012, vol. 1, p. 27.CrossRefGoogle Scholar
  3. 3.
    Berry, G.E. and Asokan, A., Cellular transduction mechanisms of adeno-associated viral vectors, Curr. Opin. Virol., 2016, vol. 21, pp. 54–60.CrossRefGoogle Scholar
  4. 4.
    Ibraheem, D., Elaissari, A., and Fessi, H., Gene therapy and DNA delivery systems, Int. J. Pharm., 2014, vol. 459, pp. 70–83.CrossRefGoogle Scholar
  5. 5.
    Lukashev, A.N. and Zamyatnin, A.A., Jr., Viral vectors for gene therapy: Current state and clinical perspectives, Biochemistry (Moscow), 2016, vol. 81, pp. 700–708.Google Scholar
  6. 6.
    Ramamoorth, M. and Narvekar, A., Non-viral vectors in gene therapy–an overview, J. Clin. Diagn. Res., 2015, vol. 9, pp. GE01–GE06.Google Scholar
  7. 7.
    Slivac, I., Guay, D., Mangion, M., Champeil, J., and Gaillet, B., Non-viral nucleic acid delivery methods, Expert Opin. Biol. Ther., 2017, vol. 17, pp. 105–118.CrossRefGoogle Scholar
  8. 8.
    Zhang, C., Jin, R., Zhao, P., and Lin, C., A family of cationic polyamides for in vitro and in vivo gene transfection, Acta Biomater., 2015, vol. 22, pp. 120–130.CrossRefGoogle Scholar
  9. 9.
    Zhang, P. and Wagner, E., History of polymeric gene delivery systems, Top. Curr. Chem. (Cham), 2017, vol. 375, p. 26.CrossRefGoogle Scholar
  10. 10.
    Stanzl, E.G., Trantow, B.M., Vargas, J.R., and Wender, P.A., Fifteen years of cell-penetrating, guanidinium-rich molecular transporters: basic science, research tools, and clinical applications, Acc. Chem. Res., 2013, vol. 46, pp. 2944–2954.CrossRefGoogle Scholar
  11. 11.
    Kouchakzadeh, H. and Abbas Shojaosadati, S., The prominent role of protein-based delivery systems on the development of cancer treatment, Curr. Pharm. Des., 2016, vol. 22, pp. 3455–3465.CrossRefGoogle Scholar
  12. 12.
    Komin, A., Russell, L.M., Hristova, K.A., and Searson, P.C., Peptide-based strategies for enhanced cell uptake, transcellular transport, and circulation: Mechanisms and challenges, Adv. Drug Delivery Rev., 2017, vols. 110–111, pp. 52–64.CrossRefGoogle Scholar
  13. 13.
    Radis-Baptista, G., Campelo, I.S., Morlighem, J.R.L., et al., Cell-penetrating peptides (CPPs): From delivery of nucleic acids and antigens to transduction of engineered nucleases for application in transgenesis, J. Biotechnol., 2017, vol. 252, pp. 15–26.CrossRefGoogle Scholar
  14. 14.
    Balicki, D. and Beutler, E., Histone H2A significantly enhances in vitro DNA transfection, Mol. Med., 1997, vol. 3, pp. 782–787.CrossRefGoogle Scholar
  15. 15.
    Puebla, I., Esseghir, S., Mortlock, A., et al., A recombinant H1 histone-based system for efficient delivery of nucleic acids, J. Biotechnol., 2003, vol. 105, pp. 215–226.CrossRefGoogle Scholar
  16. 16.
    Kaouass, M., Beaulieu, R., and Balicki, D., Histonefection: Novel and potent non-viral gene delivery, J. Controlled Release, 2006, vol. 113, pp. 245–254.CrossRefGoogle Scholar
  17. 17.
    Reilly, M.J., Larsen, J.D., and Sullivan, M.O., Histone H3 tail peptides and poly(ethylenimine) have synergistic effects for gene delivery, Mol. Pharm., 2012, vol. 9, pp. 1031–1040.CrossRefGoogle Scholar
  18. 18.
    Hariton-Gazal, E., Rosenbluh, J., Graessmann, A., et al., Direct translocation of histone molecules across cell membranes, J. Cell Sci., 2003, vol. 116, pp. 4577–4586.CrossRefGoogle Scholar
  19. 19.
    Wagstaff, K.M., Glover, D.J., Tremethick, D.J., and Jans, D.A., Histone-mediated transduction as an efficient means for gene delivery, Mol. Ther., 2007, vol. 15, pp. 721–731.CrossRefGoogle Scholar
  20. 20.
    Schneeweiss, A., Buyens, K., Giese, M., et al., Synergistic effects between natural histone mixtures and polyethylenimine in non-viral gene delivery in vitro, Int. J. Pharm., 2010, vol. 400, pp. 86–95.CrossRefGoogle Scholar
  21. 21.
    Torchilin, V.P., Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers, Adv. Drug Delivery Rev., 2008, vol. 60, pp. 548–558.CrossRefGoogle Scholar
  22. 22.
    Sawant, R. and Torchilin, V., Intracellular transduction using cell-penetrating peptides, Mol. Biosyst., 2011, vol. 6, pp. 628–640.CrossRefGoogle Scholar
  23. 23.
    Ulasov, A.V., Khramtsov, Y.V., Trusov, G.A., et al., Properties of PEI-based polyplex nanoparticles that correlate with their transfection efficacy, Mol. Ther., 2011, vol. 19, pp. 103–112.CrossRefGoogle Scholar
  24. 24.
    Johns, E.W., The isolation and purification of histones, Methods Cell Biol., 1977, vol. 16, pp. 183–203.CrossRefGoogle Scholar
  25. 25.
    von Holt, C., Brandt, W.F., Greyling, H.J., et al., Isolation and characterization of histones, Methods Enzymol., 1989, vol. 170, pp. 431–523.CrossRefGoogle Scholar
  26. 26.
    Tanaka, Y., Tawaramoto-Sasanuma, M., Kawaguchi, S., et al., Expression and purification of recombinant human histones, Methods, 2004, vol. 33, pp. 3–11.CrossRefGoogle Scholar
  27. 27.
    Shechter, D., Dormann, H.L., Allis, C.D., and Hake, S.B., Extraction, purification and analysis of histones, Nat. Protoc., 2007, vol. 2, pp. 1445–1457.CrossRefGoogle Scholar
  28. 28.
    Gusarov, D.A., Methods for bacterial endotoxines removal from protein solutions, Biopharm. J., 2009, vol. 1, no. 3, pp. 10–17.Google Scholar
  29. 29.
    Gusarov, D., Sokolova, I., Vorobjeva, T., and Brykova, N., Positively charged proteins: Separation and depyrogenation by means of HPLC (by the example of recombinant histone H1.3 variant), Biopharm. J., 2011, vol. 3, pp. 16–23.Google Scholar
  30. 30.
    Klinker, H., Haas, C., Harrer, N., Becker, P.B., and Mueller-Planitz, F., Rapid purification of recombinant histones, PLoS One, 2014, vol. 9, p. e104029.CrossRefGoogle Scholar
  31. 31.
    Fujitani, H. and Holoubek, V., Recovery of histones by acid extraction from chromatin and from artificial DNA-histone complex, Tex. Rep. Biol. Med., 1974, vol. 32, pp. 461–478.Google Scholar
  32. 32.
    Kawashige, M., Sendo, T., Otsubo, K., et al., Quality evaluation of commercial lyophilized human growth hormone preparations, Biol. Pharm. Bull., 1995, vol. 18, pp. 1793–1796.CrossRefGoogle Scholar
  33. 33.
    Ahangari, G., Ostadali, M.R., Rabani, A., et al., Growth hormone antibodies formation in patients treated with recombinant human growth hormone, Int. J. Immunopathol. Pharmacol., 2004, vol. 17, pp. 33–38.CrossRefGoogle Scholar
  34. 34.
    Balicki, D., Reisfeld, R.A., Pertl, U., et al., Histone H2A-mediated transient cytokine gene delivery induces efficient antitumor responses in murine neuroblastoma, Proc. Natl. Acad. Sci. U. S. A., 2000, vol. 97, pp. 11 500–11 504.CrossRefGoogle Scholar
  35. 35.
    Torchilin, V.P., Cell penetrating peptide-modified pharmaceutical nanocarriers for intracellular drug and gene delivery, Biopolymers, 2008, vol. 90, pp. 604–610.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • M. V. Zinovyeva
    • 1
    Email author
  • A. V. Sass
    • 1
  • A. V. Vvedensky
    • 1
  • V. K. Potapov
    • 1
  • L. G. Nikolaev
    • 1
  • E. D. Sverdlov
    • 1
    • 2
  1. 1.Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Molecular Genetics of the Russian Academy of SciencesMoscowRussia

Personalised recommendations