Advertisement

Genotype Diversity in the Local Arkhangelsk (Russia) Neisseria gonorrhoeae Population: Emergence Mechanisms and Relation with Antimicrobial Resistance

  • A. A. Kubanov
  • K. V. Baryshkov
  • A. V. Chestkov
  • B. L. Shaskolskiy
  • D. A. Gryadunov
  • D. G. DeryabinEmail author
EXPERIMENTAL WORKS
  • 1 Downloads

Abstract

132 clinical isolates of N. gonorrhoeae collected in Arkhangelsk region during 2014–2016 were analyzed in accordance with the NG-MAST protocol (Neisseria gonorrhoeae Multi Antigen Sequence Typing). A diversity of the analyzed strains was represented by 53 NG-MAST sequence-types; 30 of them were new registered due to earlier unknown either porB and tbpB sequences or their combinations. Three pathways of the diversity formation are supposed: long-term circulation of some NG-MAST-types with sequential transmission via the “sexual chains” (40.1% of the total population); introduction of new molecular types (27.3%); appearance of point mutations in porB and tbpB genes with the emergence of previously unknown genotypic variants of N. gonorrhoeae (32.6%). Emerged NG-MAST types inherited the mutational profile in penA, ponA, rpsJ, gyrA, and parC genes followed by conservation of antimicrobial resistance in the local N. gonorrhoeae population, whereas these determinants do not play a significant role in contemporary gonococci molecular evolution.

Keywords:

Neisseria gonorrhoeae molecular typing NG-MAST resistance to antimicrobial substances 

Notes

REFERENCES

  1. 1.
    European Centre for Disease Prevention and Control. Molecular Typing of Neisseria gonorrhoeae—Results from a Pilot Study 2010–2011, Stockholm: European Centre for Disease Prevention and Control, 2012.Google Scholar
  2. 2.
    Unemo, M., Olcén, P., Albert, J., and Fredlund, H., Comparison of serologic and genetic porB-based typing of Neisseria gonorrhoeae: Consequences for future characterization, J. Clin. Microbiol., 2003, vol. 41, no. 9, pp. 4141–4147.CrossRefGoogle Scholar
  3. 3.
    DeRocco, A.J. and Cornelissen, C.N., Identification of transferrin-binding domains in TbpB expressed by Neisseria gonorrhoeae, Infect. Immun., 2007, vol. 75, no. 7, pp. 3220–3232.CrossRefGoogle Scholar
  4. 4.
    Martin, I.M., Ison, C.A., Aanensen, D.M., et al., Rapid sequencing-based identification of gonococcal transmission clusters in a large metropolitan area, J. Infect. Dis., 2004, vol. 189, no. 8, pp. 1497–1505.CrossRefGoogle Scholar
  5. 5.
    Risley, C.L., Ward, H., Choudhury, B., et al., Geographical and demographic clustering of gonorrhoeae in London, Sex. Transm. Infect., 2007, vol. 83, no. 6, pp. 481–487.CrossRefGoogle Scholar
  6. 6.
    Thakur, S.D., Levett, P.N., Horsman, G.B., and Dillon, J.-A.R., Molecular epidemiology of Neisseria gonorrhoeae isolates from Saskatchewan, Canada: Utility of NG-MAST in predicting antimicrobial susceptibility regionally, Sex. Transm. Infect., 2014, vol. 90, no. 4, pp. 297–302.CrossRefGoogle Scholar
  7. 7.
    Unemo, M., Vorobieva, V., Firsova, N., et al., Neisseria gonorrhoeae population in Arkhangelsk, Russia: Phenotypic and genotypic heterogeneity, Clin. Microbiol. Infect., 2007, vol. 13, no. 9, pp. 873–878.CrossRefGoogle Scholar
  8. 8.
    Baryshkov, K.V., Frigo, N.V., and Solomka, V.S., Molecular monitoring and determination of N. gonorrhoeae susceptibility to antimicrobial drugs as instruments for controlling gonococcal infection spread in the Arkhangelsk region, 2013, vol. 4, pp. 52–62.Google Scholar
  9. 9.
    Vorobyev, D.V., Solomka, V.S., Plakhova, K.I., et al., NG-MAST genotyping of Neisseria gonorrhoeae strains isolated in the Russian Federation in 2012–2015 years, Zh. Mikrobiol., Epidemiol. Immunobiol., 2016, vol. 4, pp. 42–50.Google Scholar
  10. 10.
    World Health Organization. Global Action Plan to Control the Spread and Impact of Antimicrobial Resistance in Neisseria gonorrhoeae, Geneva: World Health Organization, 2012.Google Scholar
  11. 11.
    Kubanov, A., Vorobyev, D., Chestkov, A., et al., Molecular epidemiology of drug-resistant Neisseria gonorrhoeae in Russia (Current status, 2015), BMC Infect. Dis., 2016, vol. 16, p. 389.CrossRefGoogle Scholar
  12. 12.
    Tamura, K., Stecher, G., Peterson, D., et al., MEGA6: Molecular Evolutionary Genetics Analysis version 6.0., Mol. Biol. Evol., 2013, vol. 30, pp. 2725–2729.CrossRefGoogle Scholar
  13. 13.
    Lebedzeu, F., Golparian, D., Titov, L., et al., Antimicrobial susceptibility/resistance and NG-MAST characterization of Neisseria gonorrhoeae in Belarus, Eastern Europe, 2010–2013, BMC Infect. Dis., 2015, vol. 15, p. 29.CrossRefGoogle Scholar
  14. 14.
    Kushnir, A.V., Muminov, T.A., Bayev, A.I., et al., Molecular characterization of Neisseria gonorrhoeae isolates in Almaty, Kazakhstan, by VNTR analysis, Opa-typing and NG-MAST, Infect., Genet. Evol., 2012, vol. 12, pp. 570–576.CrossRefGoogle Scholar
  15. 15.
    Seib, K.L., Wu, H.-J., Kidd, S.P., et al., Defenses against oxidative stress in Neisseria gonorrhoeae: A system tailored for a challenging environment, Microbiol. Mol. Biol. Rev., 2006, vol. 70, no. 2, pp. 344–361.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • A. A. Kubanov
    • 1
  • K. V. Baryshkov
    • 2
  • A. V. Chestkov
    • 1
  • B. L. Shaskolskiy
    • 3
  • D. A. Gryadunov
    • 3
  • D. G. Deryabin
    • 1
    Email author
  1. 1.State Research Center of Dermatovenerology and CosmetologyMoscowRussia
  2. 2.Arkhangelsk Clinical Dermatovenerologic DispensaryArkhangelskRussia
  3. 3.Engelhardt Institute of Molecular BiologyMoscowRussia

Personalised recommendations