Advertisement

Kinematics and Physics of Celestial Bodies

, Volume 34, Issue 6, pp 313–326 | Cite as

Optimization of Video Camera Disposition for the Maximum Calculation Precision of Coordinates of Natural and Artificial Atmospheric Objects in Stereo Observations

  • P. M. KozakEmail author
  • V. P. LapchukEmail author
  • L. V. KozakEmail author
  • V. M. IvchenkoEmail author
INSTRUMENTS AND DEVICES
  • 13 Downloads

Abstract

The problem of optimizing the disposition of a pair of video cameras to provide the maximum accuracy of the calculated radius and velocity vectors of natural and artificial objects in the atmosphere and near-earth space from double-station TV observations is considered. The effects of the video camera resolution and the accuracy of determining the positions of the observational sites on the accuracy of the calculated distance to the atmospheric object are investigated. A relation for calculating the relative determination error for the distance relative to the baseline is derived. Errors of components of the radius and velocity vectors are calculated using a Monte Carlo simulation of the direct problem. A 3D distribution is presented for the errors in calculating the coordinates of the object under observation. A demonstration is provided of the calculation accuracy for the absolute value of the body’s velocity and the error distribution for the velocity-vector direction on a sphere. The demonstration uses the calculated results for atmospheric kinematic parameters of meteors. A brief discussion is given of the possible fields to apply the results obtained: astronomy, geophysics, atmosphere physics, geodesy, aviation, and computer vision systems.

Keywords:

video observation TV stereo observations atmospheric object observations meteors kinematic parameter determination accuracy distance determination errors velocity vector calculation errors 

Notes

ACKNOWLEDGMENTS

This work was supported by the Ministry of Education and Science of Ukraine under the topic “Cosmic Factors of Terrestrial Cataclysms: Observation, Analysis, Information Support” (project no. 16BF023-02) and, in part, by the Yuzhnoe State Design Office.

REFERENCES

  1. 1.
    L. V. Kozak, V. N. Ivchenko, A. S. Odzimek, I. S. Klokov, P. N. Kozak, and V. P. Lapchuk, “Estimation of atmosphere glow energy over storm discharges,” Kosm. Nauka Tehnol. 18 (2), 33–42 (2012).CrossRefGoogle Scholar
  2. 2.
    L. Kozak, A. Odzimek, V. Ivchenko, P. Kozak, I. Gala, and V. Lapchuk, “The optical effects from high-altitude storm discharges in Earth atmosphere,” Vestn. Kyiv. Nats. Univ. im. Tarasa Shevchenko. Ser. Astron., No. 1 (53), 11–15 (2016).Google Scholar
  3. 3.
    P. N. Kozak, “Analysis of the methods and precision of determination of the equatorial coordinates in digital reducing of TV observations of meteors,” Kinematika Fiz. Nebesnykh Tel 18, 471–480 (2002).ADSGoogle Scholar
  4. 4.
    P. N. Kozak, “Vector method for the determination of trajectory parameters and heliocentric orbit elements of a meteor in TV observations,” Kinematika Fiz. Nebesnykh Tel 19, 62–76 (2003).ADSGoogle Scholar
  5. 5.
    P. M. Kozak and L. V. Kozak, “Method for photometry of low light level meteors and earth artificial satellites from observations of superisocon TV systems,” Kosm. Nauka Tekhnol. 21 (1), 38–47 (2015).CrossRefGoogle Scholar
  6. 6.
    E. Bettonvil, “Least squares estimation of a meteor trajectory and radiant with a Gauss–Markov model,” in Proc. Int. Meteor Conf. 2005, Oostmalle, Belgium, Oct. 15–18, 2005, Ed. L. by Bastiaens, J. Verbert, J.-M. Wislez, and C. Verbeeck, (Int. Meteor Organisation, 2006), pp. 63–73.Google Scholar
  7. 7.
    P. Brown, M. D. Campbell, R. L. Hawkes, C. Theijsmeijer, and J. Jones, “Multi-station electro-optical observations of the 1999 Leonid meteor storm,” Planet. Space Sci. 50, 45–55 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    Y. Fujiwara, M. Ueda, Y. Kawasaki, and T. Nakamura, “Observation of the Leonid meteor shower in 2002: First observation of a faint meteor storm,” Publ. Astron. Soc. Jpn. 55, 1157–1162 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    Y. M. Gorbanev, “Odessa television meteor patrol,” Odessa Astron. Publ. 22, 60–67 (2009).ADSGoogle Scholar
  10. 10.
    P. S. Gural, “Algorithms and software for meteor detection,” Earth, Moon, Planets 102, 269–275 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    M. Hajdukova, V. G. Kruchinenko, A. M. Kazantsev, Ju. G. Taranucha, A. A. Rozhilo, S. S. Eryomin, and P. N. Kozak, “Perseid meteor stream 1991–1993 from TV observations in Kiev,” Earth, Moon, Planets 68, 297–301 (1995).ADSCrossRefGoogle Scholar
  12. 12.
    M. Iye, M. Tanaka, M. Yanagisawa, N. Ebizuka, K. Ohnishi, C. Hirose, N. Asami, Y. Komiyama, and H. Furusawa, “SuprimeCam observation of sporadic meteors during Perseids 2004,” Publ. Astron. Soc. Jpn. 59, 841–855 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    P. Koten, “Software for processing of meteor video records,” in Proc. Int. Conf. Asteroids, Comets, Meteors (ACM’2002), Berlin, Germany, July 29 – Aug. 2, 2002, Ed. by B. Warmbein (Eur. Space Agency, Noordwijk, 2002), pp. 197–200.Google Scholar
  14. 14.
    P. Koten, K. Fliegel, S. Vítek, and P. Páta, “Automatic video system for continues monitoring of the meteor activity,” Earth, Moon, Planets. 108, 69–76 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    P. Koten, P. Spurny, J. Borovicka, and R. Stork, “Catalogue of video meteor orbits. Part 1,” Publ. Astron. Inst. Acad. Sci. Czech Repub., No. 91, 1–32 (2003).Google Scholar
  16. 16.
    P. Kozak, “"Falling Star”: Software for processing of double-station TV meteor observations,” Earth, Moon, Planets 102, 277–283 (2008).ADSCrossRefGoogle Scholar
  17. 17.
    P. M. Kozak, A. A. Rozhilo, and Y. G. Taranukha, “Some features of digital kinematic and photometrical processing of faint TV meteors,” in Proc. Int. Conf. Meteoroids 2001, Kiruna, Sweden, Aug. 6–10, 2001, Ed. by B. Warmbein (Eur. Space Agency, Noordwijk, 2001), pp. 337–342.Google Scholar
  18. 18.
    P. Kozak, O. Rozhilo, V. Kruchynenko, A. Kazantsev, and A. Taranukha, “Results of processing of Leonids-2002 meteor storm TV observations in Kyiv,” Adv. Space Res. 39, 619–623 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    P. M. Kozak and J. Watanabe, “Upward-moving low-light meteor — I. Observation results,” Mon. Not. R. Astron. Soc. 467, 793–801 (2017).ADSGoogle Scholar
  20. 20.
    S. Molau, “The meteor detection software MetRec,” in Proc. Int. Conf. Meteoroids 1998, Tatranska Lomnica, Slovakia, August 17–21 1998, Ed. by W. J. Baggaley and V. Porubcan (Astron. Inst. Slovak Acad. Sci., Bratislava, 1999), p. 131.Google Scholar
  21. 21.
    A. Odzimek, J. Bór, M. Mielniczek, M. Pajek, P. Struzik, and P. Novak, “A case study of two sprite events recorded over Western Europe,” in Proc. EGU General Assembly 2013, Vienna, Austria, Apr. 7–12, 2013; Geophys. Res. Abstr. 15, EGU2013-8775-2 (2013).Google Scholar
  22. 22.
    SonotaCo, “A meteor shower catalog based on video observations in 2007–2008,” WGN, J. Int. Meteor Organ. 37, 55 (2009).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Astronomical Observatory, Taras Shevchenko National University of KyivKyivUkraine
  2. 2.Taras Shevchenko National University of KyivKyivUkraine

Personalised recommendations