Seismic Instruments

, Volume 54, Issue 6, pp 611–618 | Cite as

Geohydroacoustic Noise Monitoring of Under-Ice Water Areas of Northern Seas

  • A. L. Sobisevich
  • D. A. Presnov
  • R. A. ZhostkovEmail author
  • L. E. Sobisevich
  • A. S. Shurup
  • D. V. Likhodeev
  • V. M. Agafonov


The paper presents the results of theoretical and experimental research into the structure of geohydroacoustic wave fields generated in continuous ice-covered northern seas. A simplified mathematical model is constructed that takes into account experimental data demonstrating that the generation of different types of geohydroacoustic waves in the lithosphere–hydrosphere–ice cover system are primarily influenced by the water layer with the ice cover. The seafloor structure mainly affects the characteristics of propagating waves rather than the generation of new modes. Mathematical modeling results have laid the basis for new technologies to localize inhomogeneities in ice-covered water areas. The main distinguishing feature of this novel technology for monitoring a medium under ice-covered marine conditions is the possibility to measure noise signal parameters without active geohydroacoustic emission sources. Methods that measure the characteristics of surface-type waves are the most promising for use in northern sea conditions, in particular, microseismic sounding and noise tomography. Integration of these methods combines the recent achievements of passive geophysics and takes into account the particularities of underwater acoustics. To obtain information on the wave propagation medium, both the wave field amplitude and phase characteristics are used. To detect particular types of waves in records, spatiotemporal signal processing methods are used with the appropriate choice of frequency range. The authors describe their new-generation seismohydroacoustic information-measuring modules (embedded buoys), which are equipped with vector and molecular-electronic primary transducers. The information-measuring modules are designed for combined use with distributed ice-class arrays capable of monitoring continuous ice-covered northern seas year round. Studies of how ice-embedded information-measuring systems function, as well as verification of the obtained theoretical results, were carried out during field tests in February 2017. At each measurement point, the receiver system consisted of three reference devices that took measurements on the seafloor, in the water column, and on the ice surface. Mockups of the tested geohydroacoustic buoys were embedded at points offset by 1 km. Dropped 32 kg weights were used as the sources. Controlled perturbations in the ice experiments made it possible to obtain qualitative spectrograms of geohydroacoustic perturbations in layered structures and analyze the dispersion curves. When the fundamental bottom modes were studied, the signal source consisted of an underwater charge at a depth of 10 m. The embedded seismohydroaoustic information-measuring modules successfully passed the ice-based tests in field conditions at low temperatures, demonstrating the reliability of the obtained seismohydroacoustic information. The experimental data agree very well with theoretical estimates obtained with the created model of a layered geological medium. These studies demonstrated that natural sea noise contains useful information reflecting the internal structure of the seafloor and the water layer and led to development of the instrumental and methodological foundations of a noise technology for localizing inhomogeneities in the aquatic environment and layered bottom structures of northern seas by means of passive microseismic noise monitoring.


monitoring of layered media under-ice water area seafloor hydroacoustic fields passive monitoring mathematical modeling surface wave dispersion information-measuring modules geohydroacoustic arrays field experiments 



The work was financed by the Russian Foundation for Basic Research (project nos. 16-35-00547, 16-29-02046) and the Basic Research Program of the Presidium of the Russian Academy of Sciences.


  1. 1.
    Agafonov, V.M., Egorov, I.V., and Shabalina, A.S., Operating principles and technical characteristics of a small-sized molecular-electronic seismic sensor with negative feedback, Seism. Instrum., 2014, vol. 50, no. 1, pp. 1–8.CrossRefGoogle Scholar
  2. 2.
    Asming, V.E., Baranov, S.V., Vinogradov, Yu.A., and Voronin, A.I., Seismic and infrasonic monitoring on the Spitsbergen archipelago, Seism. Instrum., 2013, vol. 49, no. 3, pp. 209–218.CrossRefGoogle Scholar
  3. 3.
    Asming, V.E., Baranov, S.V., Vinogradov, A.N., Vinogradov, Yu.A., and Fedorov, A.V., Using an infrasonic method to monitor the destruction of glaciers in Arctic conditions, Acoust. Phys., 2016, vol. 62, no. 5, pp. 583–592. doi 10.1134/S1063771016040035CrossRefGoogle Scholar
  4. 4.
    Bashilov, I.P., Zubko, Yu.N., Levchenko, D.G., Ledenev, V.V., Pavlyukova, E.R., and Paramonov, A.A., Bottom-based geophysical observatories: Design methods and applications, Nauchn. Priborostr., 2008, vol. 18, no. 2, pp. 86–97.Google Scholar
  5. 5.
    Bashilov, I.P., Volosov, S.G., Merkulov, V.A., Rybakov, N.P., Sukonkin, S.Ya., and Chervinchuk, S.Yu., Development and full-scale testing of prototypes of Tsdss-M and MDM digital seafloor seismic stations intended for security systems, Seism. Instrum., 2018, vol. 54, no. 6, pp. 619–625.Google Scholar
  6. 6.
    Brown, M.G., Godin, O.A., Williams, N.J., Zabotin, N.A., Zabotina, L.Y., and Banker, G.J., Acoustic Green’s function extraction from ambient noise in a coastal ocean environment, Geophys. Res. Lett., 2014, vol. 41, no. 15, pp. 5555–5562. doi 10.1002/2014GL060926CrossRefGoogle Scholar
  7. 7.
    Burov, V.A., Sergeev, S.N., and Shurup, A.S., The use of low-frequency noise in passive tomography of the ocean, Acoust. Phys., 2008, vol. 54, no. 1, pp. 42–51.CrossRefGoogle Scholar
  8. 8.
    Burov, V.A., Grinyuk, A.V., Kravchenko, V.N., Mukhanov, P.Yu., Sergeev, S.N., and Shurup, A.S., Selection of modes from a shallow-water noise field by single bottom hydrophones for passive tomography purposes, Acoust. Phys., 2014, vol. 60, no. 6, pp. 647–656. doi 10.1134/S1063771014060049CrossRefGoogle Scholar
  9. 9.
    Fedorov, A.V. and Asming, V.E., Monitoring of glaciers activity on Svalbard using seismic method, Nauka Tekhnol. Razrab., 2015, vol. 94, no. 4, pp. 44–52.Google Scholar
  10. 10.
    Gibbons, S.J., Asming, V., Fedorov, A., Fyen, J., Kero, J., Kozlovskaya, E., Kværna, T., Liszka, L., Näsholm, S.P., Raita, T., Roth, M., Tiira, T., and Vinogradov, Yu., The European Arctic: A laboratory for seismoacoustic studies, Seismol. Res. Lett., 2015, vol. 86, no. 3, pp. 917–928.CrossRefGoogle Scholar
  11. 11.
    Godin, O.A., Brown, M.G., Zabotin, N.A., Zabotina, L.Y., and Williams, N.J., Passive acoustic measurement of flow velocity in the Straits of Florida, Geosci. Lett., 2014, vol. 1, no. 16, pp. 1–7. doi 10.1186/s40562-014-0016-6CrossRefGoogle Scholar
  12. 12.
    Godin, O.A., Ball, J.S., Brown, M.G., Zabotin, N.A., Zabotina, L.Y., and Zang, X., Application of time-warping to passive acoustic remote sensing, J. Acoust. Soc. Am., 2015, vol. 137, no. 4. pp. 2362–2362. doi 10.1121/1.4920581CrossRefGoogle Scholar
  13. 13.
    Gorbatikov, A.V., RF Patent 2271554, Byull. Izobret., 2006, no. 7.Google Scholar
  14. 14.
    Gorbenko, V.I., Zhostkov, R.A., Likhodeev, D.V., Presnov, D.A., and Sobisevich, A.L., Feasibility of using molecular-electronic seismometers in passive seismic prospecting: Deep structure of the Kaluga ring structure from microseismic sounding, Seism. Instrum., 2017, vol. 53, no. 3, pp. 181–191.CrossRefGoogle Scholar
  15. 15.
    Gruzdev, P.D., Dmitrichenko, V.P., Zhostkov, R.A., Kochedykov, V.N., Rudenko, O.V., Sobisevich, A.L., Sobisevich, L.E., and Sukhoparov, P.D., RF Patent 2215780, Byull. Izobret., 2014, no. 15.Google Scholar
  16. 16.
    Levchenko, D.G., Methods and tools for measuring parameters of oceanic medium by automatic multipurpose bottom stations, Neftegaz. Geol. Teor. Prakt., 2010, vol. 5, no. 2, pp. 511.Google Scholar
  17. 17.
    Levchenko, D.G., Ledenev, V.V., Il’in, I.A., and Paramonov, A.A., Long-term seismological sea-bottom monitoring using autonomous bottom stations, Seism. Instrum., 2010, vol. 46, no. 1, pp. 1–12.CrossRefGoogle Scholar
  18. 18.
    Levchenko, D.G., Lobkovskiy, L.I., Ilinskiy, D.A., Raushenbakh, I.B., Ledenev, V.V., and Roginskiy, K.A., Experience of the development and testing of an integrated bottom-cable seismic station, Seism. Instrum., 2015, vol. 51, no. 3, pp. 242–251.CrossRefGoogle Scholar
  19. 19.
    Ledenev, V.V., Levchenko, D.G., and Nosov, A.V., Analysis of methods for constructing automatic multi-purpose bottom stations, Neftegaz. Geol. Teor. Prakt., 2010, vol. 5, no. 2, p. 1.Google Scholar
  20. 20.
    Pestsov, S.K., Strategy and policy of Russia in the Arctic region, in Natsional’nye strategii osvoeniya Arktiki i budushchee Arkticheskogo regiona (po materialam kruglogo stola) (National Strategies of Exploration and Future of the Arctic Region: Proceedings of the Round-Table Conference), vol. 45 of Informatsionno-analiticheskii byulleten’ “U karty Tikhogo okeana” (Near the Pacific Ocean Map: Informational and Analytical Bulletin), 2016, pp. 6–19.Google Scholar
  21. 21.
    Petukhov, Yu.V., Razin, A.V., Sobisevich, A.L., and Kulikov, V.I., Seismoakusticheskie i akustiko-gravitatsionnye volny v sloistykh sredakh (Seismoacoustic and Acoustic-Gravitational Waves in Layered Media), Moscow: Inst. Fiz. Zemli Ross. Akad. Nauk, 2013.Google Scholar
  22. 22.
    Presnov, D.A., Zhostkov, R.A., Gusev, V.A., and Shurup, A.S., Dispersion dependences of elastic waves in an ice-covered shallow sea, Acoust. Phys., 2014, vol. 60, no. 4, pp. 455–465. doi 10.1134/S1063771014040150CrossRefGoogle Scholar
  23. 23.
    Presnov, D.A., Sobisevich, A.L., and Shurup, A.S., Model of the geoacoustic tomography based on surface-type waves, Phys. Wave Phenom., 2016, vol. 24, no. 3, pp. 249–254. doi 10.3103/S1541308X16030109CrossRefGoogle Scholar
  24. 24.
    Presnov, D.A., Zhostkov, R.A., Shurup, A.S., and Sobisevich, A.L., On-site observations of seismoacoustic waves under the conditions of an ice-covered water medium, Bull. Russ. Acad. Sci.: Phys., 2017, vol. 81, no. 1, pp. 68–71. doi 10.3103/S1062873817010233CrossRefGoogle Scholar
  25. 25.
    Rogozhin, E.A., Antonovskaya, G.N., and Kapustyan, N.K., Current state and prospects of the development of an Arctic seismic monitoring system, Seism. Instrum., 2016, vol. 52, no. 2, pp. 144–153.CrossRefGoogle Scholar
  26. 26.
    Shabalina, A.S., Zaitsev, D.L., Egorov, E.V., Egorov, I.V., Antonov, A.N., Bugaev, A.S., Agafonov, V.M., and Krishtop, V.G., Molecular electron converters in modern measuring systems, Usp. Sovrem. Radioelektron., 2014, no. 9, pp. 33–47.Google Scholar
  27. 27.
    Sukhoparov, P.D., Dmitrichenko, V.P., Presnov, D.A., Sobisevich, A.L., and Sobisevich, L.E., RF Patent 2594663, Byull. Izobret., 2016, no. 23.Google Scholar
  28. 28.
    Tsukanov, A.A. and Gorbatikov, A.V., Microseismic sounding method: Implications of anomalous Poisson ratio and evaluation of nonlinear distortions, Izv., Phys. Solid Earth, 2015, vol. 51, no. 4, pp. 548–558. doi 10.1134/S1069351315040126CrossRefGoogle Scholar
  29. 29.
    Vinogradov, Yu.A., Asming, V.E., Baranov, S.V., Fedorov, A.V., and Vinogradov, A.N., Seismic and infrasonic monitoring of glacier destruction: A pilot experiment on Svalbard, Seism. Instrum., 2015, vol. 51, no. 1, pp. 1–7.CrossRefGoogle Scholar
  30. 30.
    Walter, F., Roux, P., Roeoesli, C., Lecointre, A., Kilb, D., and Roux, P.F., Using glacier seismicity for phase velocity measurements and Green’s function retrieval, Geophys. J. Int., 2015, vol. 201, no. 3, pp. 1722–1737. doi 10.1093/ gji/ggv069CrossRefGoogle Scholar
  31. 31.
    Woolfe, K.F., Lani, S., Sabra, K.G., and Kuperman, W.A., Monitoring deep-ocean temperatures using acoustic ambient noise, Geophys. Res. Lett., 2015, vol. 42, no. 8, pp. 2878–2884. doi 10.1002/2015GL063438CrossRefGoogle Scholar
  32. 32.
    Yanovskaya, T.B., Poverkhnostno-volnovaya tomografiya v seismologicheskikh issledovaniyakh (Surface-Wave Tomography in Seismological Studies), St. Petersburg: Nauka, 2015.Google Scholar
  33. 33.
    Zhostkov, R.A., Presnov, D.A., and Sobisevich, A.L., Development of the microseismic sounding method, Vestn. KRAUNTs. Ser. Nauki Zemle, 2015, vol. 2, no. 26, pp. 11–19.Google Scholar
  34. 34.
    Zhostkov, R.A., Presnov, D.A., Shurup, A.S., and Sobisevich, A.L., Comparison between the results of statistical and dispersion approaches to the study of deep structure of the Earth: Case study of Hawaiian plume, Uch. Zap. Fiz. Fak. Mosk. Gos. Univ., 2016, no. 5, pp. 165406-1–165406-4.Google Scholar
  35. 35.
    Zhostkov, R.A., Presnov, D.A., Shurup, A.S., and Sobisevich, A.L., Comparative study of deep structures by means of passive microseismic sounding and seismic tomography, Bull. Russ. Acad. Sci.: Phys., 2017, vol. 81, no. 1, pp. 64–67. doi 10.3103/S1062873817010294CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • A. L. Sobisevich
    • 1
  • D. A. Presnov
    • 1
  • R. A. Zhostkov
    • 1
    Email author
  • L. E. Sobisevich
    • 1
  • A. S. Shurup
    • 1
    • 2
  • D. V. Likhodeev
    • 1
  • V. M. Agafonov
    • 3
  1. 1.Schmidt Institute of Physics of the Earth, Russian Academy of SciencesMoscowRussia
  2. 2.Moscow State University, Geology FacultyMoscowRussia
  3. 3.Moscow Institute of Physics and Technology (State University)DolgoprudnyRussia

Personalised recommendations