Seismic Instruments

, Volume 54, Issue 6, pp 662–668 | Cite as

AVIS Space Experiment: Testing of Technologies for the Development and Use of Multifunction Pico- and Nanosatellite Platforms

  • B. F. Nesterov
  • V. M. ChmyrevEmail author
  • V. S. Shutov
  • A. M. Alimov


The paper briefly describes the Autonomous Video Information System (AVIS) space experiment conducted as part of the Long-Term Program of Applied Scientific Research and Experiments Planned on the Russian Segment of the International Space Station (ISS RS). The program envisages the development, production, and flight tests of a picosatellite prototype and a sequence of three nanosatellite prototypes with gradually increasing functionality. The main stages include the development of methods and instruments for controlling the separation of the spacecraft, monitoring of their state in an autonomous mode, and experimental testing of the technology of separation, rendezvous, and docking of nanosatellites in orbit. The developed onboard equipment also includes a device for launching pico- and nanosatellites from the ISS RS, manually by an astronaut and by an automatic launcher for nanosatellites from the Progress transport cargo vehicle (TCV), at the command of the ISS or a ground control station. Currently, detailed working design documentation for the spacecraft and the launching device has been created within the experimental program, and work has begun on the production of experimental prototypes.


picosatellite nanosatellite international space station ISS separation monitoring rendezvous docking 



  1. 1.
    Chmyrev, V.M., Isaev, N.V., Serebryakova, O.N., Sorokin, V.M., and Sobolev, Ya.P., Small-scale plasma inhomogeneities and correlated ELF emissions in the ionosphere over an earthquake region, J. Atmos. Sol.-Terr. Phys., 1997, vol. 59, pp. 967–973.CrossRefGoogle Scholar
  2. 2.
    Chmyrev, V., Smith, A., Kataria, D., Nesterov, B., Owen, Ch., Sammonds, P., Sorokin, V., and Vallianatos, F., Detection and monitoring of earthquake precursors: TwinSat, a Russia-UK satellite project, Adv. Space Res., 2013, vol. 52. pp. 1135–1145.CrossRefGoogle Scholar
  3. 3.
    Nesterov, B.F., Chmyrev, V.M., Markov, A.V., and Konovalova, E.A., RF Patent 2550241, 2015a (unpublished).Google Scholar
  4. 4.
    Nesterov, B.F., Chmyrev, V.M., Markov, A.V., Evteev, A.N., and Kavardakova, L.B., RF Patent 2541617, 2015b (unpublished).Google Scholar
  5. 5.
    Rogozhin, E.A., Ioganson, L.I., Zav’yalov, A.D., Zakharov, V.S., Lutikov, A.I., Slavina, L.B., Reisner, G.I., Ovsyuchenko, A.N., Yunga, S.L., and Novikov, S.S., Potentsial’nye seismicheskie ochagi i seismologicheskie predvestniki zemletryasenii – osnova real’nogo seismicheskogo prognoza (Potential Seismic Sources and Seismological Precursors of Earthquakes as the Basis of Real Seismic Forecast), Moscow: Svetoch-Plyus, 2011.Google Scholar
  6. 6.
    Rogozhin, E.A., Chmyrev, V.M., Pokhotelov, O.A., and Nesterov, B.F., The TWINSAT Project: Development of integrated aerospace and ground-based technologies for early detection and monitoring of precursors of large-scale natural catastrophes, Nauka Tekhnol. Razrab., 2016, vol. 95, no. 3, pp. 12–24. doi 10.21455/std2016.3-2Google Scholar
  7. 7.
    Rogozhin, E.A., Lutikov, A.I., Sobisevich, L.E., To Shen, and Kanonidi, K.Kh., The Gorkha Earthquake of April 25, 2015 in Nepal: Tectonic position, aftershock process, and possibilities of forecasting the evolution of seismic situation, Izv., Phys. Solid Earth, 2016, vol. 52, no. 4. pp. 534–549. doi 10.1134/S1069351316040078CrossRefGoogle Scholar
  8. 8.
    Sorokin, V.M. and Chmyrev, V.M., Atmosphere–ionosphere electrodynamic coupling, in The Atmosphere and Ionosphere: Dynamics, Processes and Monitoring, Bychkov, V.L., Golubkov, G.V., and Nikitin, A.I., Eds., Dordrecht: Springer, 2010, pp. 97–146.Google Scholar
  9. 9.
    Sorokin, V.M. and Pokhotelov, O.A., Generation of ULF geomagnetic pulsations during early stage of earthquake preparation, J. Atmos. Sol.-Terr. Phys., 2010, vol. 72, pp. 763–766.CrossRefGoogle Scholar
  10. 10.
    Sorokin, V.M., Chmyrev, V.M., and Yaschenko, A.K., Electrodynamic model of the lower atmosphere and the ionosphere coupling, J. Atmos. Sol.-Terr. Phys., 2001, vol. 63, pp. 1681–1691.CrossRefGoogle Scholar
  11. 11.
    Sorokin, V.M., Ruzhin, Yu.Ya., Yaschenko, A.K., and Hayakawa, M., Generation of VHF radio emissions by electric discharges in the lower atmosphere over a seismic region, J. Atmos. Sol.-Terr. Phys., 2011, vol. 73, pp. 664–670. doi 10.1016/j.jastp.2011.01.016CrossRefGoogle Scholar
  12. 12.
    Sorokin, V., Chmyrev, V., and Tronin, A., Osnovy aerokosmicheskikh metodov monitoringa zemletryasenii (Fundamentals of Aerospace Methods of Earthquake Monitoring), Saarbrucken: Palmarium Academic Publishing, 2014.Google Scholar
  13. 13.
    Sorokin, V., Chmyrev, V., and Hayakawa M. Electrodynamic Coupling of Lithosphere-Atmosphere-Ionosphere of the Earth, New York: Nova Science Publishers, Inc., 2015.Google Scholar
  14. 14.
    Tronin, A., Satellite remote sensing in seismology. A review, Remote Sens., 2010, vol. 2, pp. 124–150.CrossRefGoogle Scholar
  15. 15.
    Wang Lanwei, Shen Xuhui, Yuan Shigeng, Zhang Yu, and Yan Rui, Introduction of the first China seismo-electromagnetic satellite project, 2nd International DEMETER Workshop, Paris, France, 2011.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • B. F. Nesterov
    • 1
  • V. M. Chmyrev
    • 1
    • 2
    Email author
  • V. S. Shutov
    • 1
  • A. M. Alimov
    • 3
  1. 1.GEOSCAN TechnologiesMoscowRussia
  2. 2.Schmidt Institute of Physics of the Earth, Russian Academy of SciencesMoscowRussia
  3. 3.S.P. Korolev Rocket and Space Corporation EnergiaKorolevRussia

Personalised recommendations