Advertisement

Seismic Instruments

, Volume 54, Issue 6, pp 619–625 | Cite as

Development and Full-Scale Testing of Prototypes of Tsdss-M and MDM Digital Seafloor Seismic Stations Intended for Security Systems

  • I. P. BashilovEmail author
  • S. G. Volosov
  • V. A. Merkulov
  • N. P. Rybakov
  • S. Ya. Sukonkin
  • S. Yu. Chervinchuk
Article
  • 2 Downloads

Abstract

The paper addresses experiments to assess whether seismic systems can be used for autonomous border surveillance on land and sea. Seismic systems as an integral part of border surveillance systems, especially maritime ones, should comply with strict performance requirements. The first-priority problem was to prepare appropriate domestic equipment and an experimental technique for seismic surveying on land and sea. When this problem was formulated, there was no suitable domestic broadband equipment. Fundamentally new technical solutions were employed to create prototypes of seismic modules of the SM-5, SM-6, and SM-3M types. On their basis, one- and three-component short-period and broadband of seismic sensor prototypes were developed, including the SM-5M, SM-6, TS-5, TS-6MSh, etc., which were used to create a prototype for a digital deep seafloor seismic station (TsDSS-M). Also, for transition zones, a seafloor seismic station was developed and tested, which is based on molecular electronic sensors that have achieved significant progress recently. The paper describes the prototypes of the TsDSS-M digital seafloor seismic station and MDM bottom seismic module for transition zones, both based on electrodynamic and molecular electronic sensors. The prototypes were tested on Lake Seliger. Shallow-water tests demonstrated the reliability and high performance of the prototypes; the desired characteristics proved to be appropriate. Importantly, TS-5 seismic modules are now manufactured at an industrial scale; this has solved the problem of import substitution in this area.

Keywords:

geophone broadband seismometer seafloor seismic station amplitude-frequency characteristic seismic recorder seismic channel sensitivity molecular electronic geophone shelf transition zone 

Notes

REFERENCES

  1. 1.
    Agafonov, V.M., Egorov, I.V., and Shabalina, A.S., Operating principles and technical characteristics of a small-sized molecular-electronic seismic sensor with negative feedback, Seism. Instrum., 2014, vol. 50, no. 1, pp. 1–8.CrossRefGoogle Scholar
  2. 2.
    Bashilov, I.P., Daragan, S.K., Mednikova, V.N., Shugal’, L.Ya., Kulikov, V.I., and Goncharov, A.I., Borehole seismometer on the basis of the SM-5 module, in Geofizicheskie protsessy v nizhnikh i verkhnikh obolochkakh Zemli. Sbornik nauchnykh trudov IDG RAN (Geophysical processes in the Lower and Upper Envelopes of the Earth: Collection of Papers of the Institute of Geospheres Dynamics, Russian Academy of Sciences), Moscow: Inst. Din. Geosfer Ross. Akad. Nauk, 2003, vol. 2, pp. 365–373.Google Scholar
  3. 3.
    Bashilov, I.P., Zubko, Yu.N., Levchenko, D.G., Ledenev, V.V., Pavlyukova, E.R., and Paramonov, A.A., Bottom-based geophysical observatories: Design methods and applications, Nauchn. Priborostr., 2008, vol. 18, no. 2, pp. 86–97.Google Scholar
  4. 4.
    Bashilov, I.P., Zagorskii, L.S., Levchenko, D.G., Rybakov, N.P., Chervinchuk, S.Yu., Shkuratnik, V.L., Om Asthana, and Pankaj Roy Gupta, Testing of portable bottom seismic sensor and reconstruction of velocity section of the Arabian Sea transition zone, Gorn. Inf.-Anal. Byull., 2013, no. 9, pp. 145–154.Google Scholar
  5. 5.
    Bashilov, I.P., Volosov, S.G., Korolev, S.A., Kosarev, G.L., Riznichenko, O.Yu., and Sanina, I.A., The ADSS-3 broadband stand-alone digital seismic station, Seism. Instrum., 2014, vol. 50, no. 3, pp. 177–191.CrossRefGoogle Scholar
  6. 6.
    Bashilov, I.P., Volosov, S.G., Korolyov, S.A., Merkulov, V.A., Ovtchinnikov, V.M., and Ovtchinniko-va, O.V., Comparative analysis of the characteristics of domestic and foreign broadband seismometers with capacitive transducers, Seism. Instrum., 2016, vol. 52, no. 3, pp. 253–265.CrossRefGoogle Scholar
  7. 7.
    Bashilov, I.P., Volosov, S.G., Korolev, S.A., Merkulov, V.A., and Ovchinnikov, V.M., A series of seismic receivers with capacity converters, Nauka Tekhnol. Razrab., 2016, vol. 95, no. 4, pp. 11–18. doi 10.21455/std2016.4-2Google Scholar
  8. 8.
    Gorbenko, V.I., Zhostkov, R.A., Likhodeev, D.V., Presnov, D.A., and Sobisevich, A.L., Feasibility of using molecular-electronic seismometers in passive seismic prospecting: Deep structure of the Kaluga ring structure from microseismic sounding, Seism. Instrum., 2017, vol. 53, no. 3, pp. 181–191.CrossRefGoogle Scholar
  9. 9.
    Ledenev, V.V., Levchenko, D.G., and Nosov, A.V., Analysis of methods for constructing automatic multi-purpose bottom stations, Neftegaz. Geol. Teor. Prakt., 2010, vol. 5, no. 2, p. 1.Google Scholar
  10. 10.
    Levchenko, D.G., Methods and tools for measuring parameters of oceanic medium by automatic multipurpose bottom stations, Neftegaz. Geol. Teor. Prakt., 2010, vol. 5, no. 2, pp. 511.Google Scholar
  11. 11.
    Levchenko, D.G., Ledenev, V.V., Il’in, I.A., and Paramonov, A.A., Long-term seismological sea-bottom monitoring using autonomous bottom stations, Seism. Instrum., 2010, vol. 46, no. 1, pp. 1–12.CrossRefGoogle Scholar
  12. 12.
    Levchenko, D.G., Lobkovskiy, L.I., Ilinskiy, D.A., Raushenbakh, I.B., Ledenev, V.V., and Roginskiy, K.A., Experience of the development and testing of an integrated bottom-cable seismic station, Seism. Instrum., 2015, vol. 51, no. 3, pp. 242–251.CrossRefGoogle Scholar
  13. 13.
    Peterson, J., Preliminary Observations of Noise Spectra at the SRO and ASRO Stations: Open File Report 80-992, Albuquerque: U. S. Geol. Surv., 1980.Google Scholar
  14. 14.
    Peterson, J., Observations and Modeling of Background Seismic Noise: Open File Report 93-322, Albuquerque: U. S. Geol. Surv., 1993.Google Scholar
  15. 15.
    Shabalina, A.S., Zaitsev, D.L., Egorov, E.V., Egorov, I.V., Antonov, A.N., Bugaev, A.S., Agafonov, V.M., and Krishtop, V.G., Molecular electron converters in modern measuring systems, Usp. Sovrem. Radioelektron., 2014, no. 9, pp. 33–47.Google Scholar
  16. 16.
    Zagorskii, L.S., Shkuratnik, V.L., and Chervinchuk, S.Yu., Assessment of marine microseismic field on the shelf, Gorn. Inf.-Anal. Byull., 2013, no. 6, pp. 125–130.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • I. P. Bashilov
    • 1
    Email author
  • S. G. Volosov
    • 2
  • V. A. Merkulov
    • 3
  • N. P. Rybakov
    • 4
  • S. Ya. Sukonkin
    • 4
  • S. Yu. Chervinchuk
    • 1
  1. 1.Scientific and Technical Center Geotekhfizpribor, Schmidt Institute of Physics of the Earth, Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Geosphere Dynamics, Russian Academy of SciencesMoscowRussia
  3. 3.PO OktyabrKamensk-UralskiiRussia
  4. 4.Experimental Design Bureau of Oceanological Engineering, Russian Academy of SciencesMoscowRussia

Personalised recommendations