Radioelectronics and Communications Systems

, Volume 62, Issue 7, pp 356–367 | Cite as

Estimation of Radar Scattering Characteristics of Artillery Shells in Meter, Decimeter and Centimeter Wavelength Ranges

  • G. S. ZalevskyEmail author
  • O. I. Sukharevsky
  • V. A. Vasilets
  • M. V. Surgai


It is researched the characteristics of radar secondary radiation of artillery shells of different types which are obtained by mathematic modeling. There are described in brief the electrodynamic methods developed by the paper authors allowing to model electromagnetic responses of air objects of complicated shape and different electrical dimensions. In case of a length and diameter of the shells are comparative to probing wave length (they have resonance dimensions) we use for calculation the method based on solution of integral equation of magnetic field. For simulation of the characteristics of secondary radiation of the shells with electrically great dimensions we use asymptotic high frequency method. Developed methods are verified by means of comparison of calculation data for modeled objects with the other authors’ numerous results and also with physical experiment data. There are shown the characteristics of secondary radiation of the shells in meter, decimeter and centimeter wavelength range. There are discussed main regularities of their secondary radiation in case two orthogonal polarizations and different time-frequency parameters of radar probing signal.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Krupnikov, “Counter-battery radar stations of main foreign countries,” Zarubezhnoye Voyennoye Obozreniye, No. 12, 32 (2010).Google Scholar
  2. 2.
  3. 3.
  4. 4.
    “New Ukrainian Counter-Battery Radar Successfully Completes Field Trials,” Defence Blog. Online Military Magazine. URI:
  5. 5.
    Russian Weapon. Modernized Artillery Radiolocation Complex for Investigation and Servicing of Ground Artillery ARK-1M “Rys”. URI:
  6. 6.
    Ö. Ergül, L. Gürel, “Linear-linear basis functions for MLFMA solutions of magnetic-field and combined-field integral equations,” IEEE Trans. Antennas Propag. 55, No. 4, 1103 (Apr. 2007). DOI: Scholar
  7. 7.
    W. C. Gibson, The Method of Moments in Electromagnetics, 2nd ed. (Chapman & Hall/CRC, Boca–Raton–London–New York, 2014). URI: Scholar
  8. 8.
    P. Ylä-Oijala, M. Taskinen, S. Järvenpää, “Analysis of surface integral equations in electromagnetic scattering and radiation problems,” Engineering Analysis with Boundary Elements 32, No. 3, 196 (2008). DOI: Scholar
  9. 9.
    Su Yan, Jian-Ming Jin, Zaiping Nie, “Improving the accuracy of the second-kind Fredholm integral equations by using the Buffa-Christiansen functions,” IEEE Trans. Antennas Propag. 59, No. 4, 1299 (Apr. 2011). DOI: Scholar
  10. 10.
    E. Ubeda, J. M. Tamayo, J. M. Rius, “Taylor-orthogonal basis functions for the discretization in method of moments of second kind integral equations in the scattering analysis of perfectly conducting or dielectric objects,” PIER 119, 85 (2011). DOI: Scholar
  11. 11.
    J. Cheng, R. J. Adams, J. C. Young, M. A. Khayat, “Augmented EFIE with normally constrained magnetic field and static charge extraction,” IEEE Trans. Antennas Propag. 63, No. 11, 4952 (Nov. 2015). DOI: Scholar
  12. 12.
    O. I. Sukharevsky, G. S. Zalevsky, V. A. Vasilets, “Modeling of ultrawideband (UWB) impulse scattering by aerial and subsurface resonant objects based on integral equation solving,” in: Taylor, J. D. (ed.), Advanced Ultrawideband Radar: Signals, Targets, and Applications (CRC Press Taylor & Francis Group, Boca Raton London New York, 2016), Ch. 5, pp. 195–235. DOI: Scholar
  13. 13.
    J. Lappalainen, P. Ylä-Oijala, D. C. Tzarouchis, A. Sihvola, “Resonances of characteristic modes for perfectly conducting objects,” IEEE Trans. Antennas Propag. 65, No. 10, 5332 (Oct. 2017). DOI: Scholar
  14. 14.
    M. V. Surgay, G. S. Zalevsky, V. O. Vasilets, O. I. Sukharevsky, “Estimation of the radar visibility level of rocket of the multiple rocket launcher ‘Grad’ in different wave bands,” Zbirnyk Naukovykh Prats KhUPS, No. 2, 142 (2017). URI: Scholar
  15. 15.
    M. V. Surgay, “Mathematic simulation of secondary radiation characteristics of the shell OF-25 for self-propelled gun 2C3 ‘Akatsiya’ in various wave bands,” Science and Technologies of Air Forces of Armed Forces of Ukraine, No. 3, 135 (2018). DOI: Scholar
  16. 16.
    Y. Liu, X.-Y. Guo, H.-J. Zhou, “A memory saving augmented EFIE with modified basis functions for low-frequency problems,” IEEE Trans. Antennas Propag. 66, No. 3, 1359 (Mar. 2018). DOI: Scholar
  17. 17.
    B. MacKie-Mason, A. Greenwood, Z. Peng, “Adaptive and parallel surface integral equation solvers for very large-scale electromagnetic modeling and simulation,” PIER 154, 143 (2015). DOI: Scholar
  18. 18.
    Y. Liu, A. C. Yücel, H. Bagci, A. C. Gilbert, E. Michielssen, “A wavelet-enhanced PWTD-accelerated time-domain integral equation solver for analysis of transient scattering from electrically large conducting objects,” IEEE Trans. Antennas Propag. 66, No. 5, 2458 (May 2018). DOI: Scholar
  19. 19.
    M. S. Tasic, B. M. Kolundzija, “Method of moment weighted domain decomposition method for scattering from large platforms,” IEEE Trans. Antennas Propag. 66, No. 7, 3577 (July 2018). DOI: Scholar
  20. 20.
    M. Kalfa, Ö. Ergül, V. B. Ertürk, “Error control of multiple-precision MLFMA,” IEEE Trans. Antennas Propag. 66, No. 10, 5651 (Oct. 2018). DOI: Scholar
  21. 21.
    S. A. Gorshkov, S. P. Leshchenko, V. M. Orlenko, S. Yu. Sedyshev, Ya. D. Shirman (eds.), Computer Simulation of Aerial Target Radar Scattering, Recognition, Detection, and Tracking (Artech House, Norwood, M.A., 2002). ISBN-10: 1580531717, ISBN-13: 978-1580531719.Google Scholar
  22. 22.
    Yu. L. Barabash, G. D. Bratchenko, A. A. Goncharuk, “Mathematic model and results of simulation of signal recognition and detection of the guns in radars of investigation of fire positions,” Visnyk Natsional’nogo Universitetu im. T. Shevchenko, No. 10, 6 (2005).Google Scholar
  23. 23.
    O. I. Sukharevsky (ed.), Electromagnetic Wave Scattering by Aerial and Ground Radar Objects (SRC Press, Boca Raton, 2015). DOI: Scholar
  24. 24.
    O. I. Sukharevsky, V. A. Vasilets, S. V. Nechitaylo, Handbook of Scattering Characterisitcs of Air and Ground Radiolocation Objects [in Ukrainian] (KhUPS, Kharkiv, 2019). ISBN 978-966-468-087-2.Google Scholar
  25. 25.
    T. W. Barrett, “Ultrawideband (UWB) time-frequency signal processing,” in: Taylor, J. D. (ed.). Advanced Ultrawideband Radar: Signals, Targets, and Applications (CRC Press, Boca Raton London New York, 2016), Ch. 4, pp. 105–194. DOI: Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Ivan Kozhedub Kharkiv National Air Force UniversityKharkivUkraine

Personalised recommendations