Advertisement

Radioelectronics and Communications Systems

, Volume 62, Issue 7, pp 311–341 | Cite as

Protection of Coherent Pulse Radars against Combined Interferences. 1. Modifications of STSP Systems and their Ultimate Performance Capabilities

  • D. I. LekhovytskiyEmail author
  • V. P. Riabukha
  • A. V. Semeniaka
  • D. V. Atamanskiy
  • Ye. A. Katiushyn
Article
  • 7 Downloads

Abstract

This paper is the first paper of the sequence devoted to modern methods of protection of coherent pulse radars against combined interferences (additive internal noise mixture masking the active jamming and clutter (passive jamming)). It compares the ultimate capabilities of the known and relatively new varieties of the interference protection (anti-jam and anti-clutter) systems under the hypothetical conditions of exact knowledge of statistical characteristics of signals and interferences. The ultimate capabilities of systems are understood in the sense that their efficiency is calculated for the hypothetical conditions of exact knowledge of statistical characteristics of input actions. The obtained estimates determine the upper bounds of efficiency in the real conditions of a priori uncertainty of parameters of signals and interferences. The losses of efficiency related to the transition to simplified systems of space-time signal processing (STSP) are also analyzed. The second paper deals with peculiarities (high-speed) of the considered anti-jam and anti-clutter systems in real conditions of parametric a priori uncertainty that is overcome by using different kinds of estimates of a priori unknown parameters of interferences. The third paper is devoted to the substantiation of general-purpose STSP system based on adaptive lattice filters.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to express sincere gratitude to professor Yu. I. Abramovich for his attention to their work, useful advices and comments that contributed to improvement of the paper.

References

  1. 1.
    Y. D. Shirman (ed.), Radioelectronic Systems: Fundamentals of Construction and Theory, Handbook, 2nd ed. [in Russian] (Radiotekhnika, Moscow, 2007).Google Scholar
  2. 2.
    J. Ward, “Space-time adaptive processing for airborne radar,” Technical Report No. 1015, Massachusetts Institute of Technology, Lincoln Laboratory (Dec. 1994).Google Scholar
  3. 3.
    R. Klemm, Space-Time Adaptive Processing — Principles and Applications, 1st ed. (UK, IEE, Stevenage, Herts., 1998).Google Scholar
  4. 4.
    R. Klemm, Principles of Space-Time Adaptive Processing, 3rd ed. in: Radar, Sonar, Navigation and Avionics Series 21, The Institution of Electrical Engineers and Technology (UK, 2006). DOI:  https://doi.org/10.1049/PBRA021E.Google Scholar
  5. 5.
    W.-D. Wirth, Radar Techniques Using Array Antennas, in: IET Radar, Sonar, Navigation and Avionics Series 10, The Institution of Engineering and Technology (UK, 2013). DOI:  https://doi.org/10.1049/PBRA026E.Google Scholar
  6. 6.
    J. R. Guerci, Space-Time Adaptive Processing for Radar, 2nd ed. (Artech House, Boston-London, 2014).Google Scholar
  7. 7.
    W. L. Melvin, “Chapter 12 - Space-time adaptive processing for radar,” Academic Press Library in Signal Processing 2, 595 (2014). DOI:  https://doi.org/10.1016/B978-0-12-396500-4.00012-0.CrossRefGoogle Scholar
  8. 8.
    Bernard Widrow, Samuel D. Stearns, Adaptive Signal Processing (Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1985).zbMATHGoogle Scholar
  9. 9.
    Robert A. Monzingo, Randy L. Haupt, Thomas W. Miller, Introduction to Adaptive Arrays, 2nd ed. (NC 27615, SciTech Publishing, Inc. Raleigh, 2011). DOI:  https://doi.org/10.1049/SBEW046E.Google Scholar
  10. 10.
    C. Wortham, Space-Time Adaptive Processing for Ground Surveillance Radar (Georgia Institute of Technology, May 2007).Google Scholar
  11. 11.
    Jingwei Xu, Shengqi Zhu, Guisheng Liao, “Space-time-range adaptive processing for airborne radar systems,” IEEE Sensors J. 15, No. 3, 1602 (Mar 2015). DOI:  https://doi.org/10.1109/JSEN.2014.2364594.CrossRefGoogle Scholar
  12. 12.
    Tamas Peto, Rudolf Seller, “Space-time adaptive cancellation in passive radar systems,” Int. J. Antennas Propag. 2018, Article ID 2467673 (2018). DOI:  https://doi.org/10.1155/2018/2467673.
  13. 13.
    V. Navratil, A. O’Brien, J. Landon Garry, G. E. Smith, “Demonstration of space-time adaptive processing for DSI suppression in a passive radar,” Proc. of 18th Int. Radar Symp., IRS, 28–30 June 2017, Prague, Czech Republic (IEEE, 2017). DOI:  https://doi.org/10.23919/IRS.2017.8008146.Google Scholar
  14. 14.
    A. P. Lukoshkin, S. S. Karpinskii, A. A. Shatalov, et al., Signal Processing in Multichannel Radars [in Russian, ed. by A. P. Lukoshkin] (Radio i Svyaz’, Moscow, 1983).Google Scholar
  15. 15.
    V. I. Samoilenko, I. V. Grubrin, “Adaptive space-time noise filtration in multichannel systems,” Radioelectron. Commun. Syst. 28, No. 9, 10 (1985).Google Scholar
  16. 16.
    V. I. Samoilenko, I. V. Grubrin, “Joint adaptation of space and time filters in multichannel systems,” Radiotekh. Elektron. 34, No. 4, 749 (1989).Google Scholar
  17. 17.
    V. G. Andrejev, T. P. Nguyen, “Adaptive processing of signals on a background of clutter and noise,” Radioelectron. Commun. Syst. 58, No. 2, 85 (2015). DOI:  https://doi.org/10.3103/S0735272715020053.CrossRefGoogle Scholar
  18. 18.
    V. A. Gandurin, A. A. Trofimov, M. I. Chernyshev, “Structure and algorithms of space-time processing of signals in pulse-Doppler surveillance patrol radar on board aircraft,” Radiotekhnika, No. 8, 90 (2009).Google Scholar
  19. 19.
    R. S. Tikhonov, “Space-time adaptive processing for forward-looking airborne radar,” Radiotekhnika, No. 12, 64 (2014). URI: http://www.radiotec.ru/article/15632#english.Google Scholar
  20. 20.
    R. S. Tikhonov, “Influence of the training set non-homogeneity on space-time adaptive processing performance in airborne pulse-Dopler radar,” Trudy MAI, No. 79, 1 (2015). URI: http://trudymai.ru/eng/published.php?ID=55772.Google Scholar
  21. 21.
    A. K. Zhuravlev, V. A. Khlebnikov, A. P. Rodimov, et al., Adaptive Radio Technical Systems with Antenna Arrays [in Russian] (Izd. Leningradskogo Universiteta, Leningrad, 1991).Google Scholar
  22. 22.
    D. I. Lekhovytskiy, A. V. Mezentsev, V. M. Tkachenko, “Efficiency of system of sequential radar protection against the combined interferences with introduction of frequency-shifted receiving channels,” Sb. Nauch. Tr. KhVU, No. 3, 25 (1995).Google Scholar
  23. 23.
    D. I. Lekhovytskiy, A. V. Mezentsev, V. M. Tkachenko, “Protection device against combined interferences,” UA Patent No. 14711, IPC G01S 7/38 (15 Jan. 1997).Google Scholar
  24. 24.
    V. D. Anokhin, S. Fauzi, V. G. Kil’dyushevskaya, “Processing of radar signals against the background of combined interferences,” Radiotekhnika, No. 5, 133 (2009).Google Scholar
  25. 25.
    D. M. Piza and A. P. Zalevskiy, “Specificities of Adaptation of Spatial Filters in Case of Influence of Combined Interferences,” Radioelektronika. Informatika. Upravlenie, No. 1, 45 (2005).Google Scholar
  26. 26.
    A. P. Zalevsky, D. M. Piza, I. S. Presniak, A. S. Sirenko, “Coherent-pulse radar signals space-time and time-space filtering performance evaluation,” Radio Electronics, Computer Science, Control, No. 2, 39 (2012). DOI:  https://doi.org/10.15588/1607-3274-2012-2-7.Google Scholar
  27. 27.
    V. P. Riabukha, D. S. Rachkov, A. V. Semeniaka, Y. A. Katiushyn, “Estimation of spatial weight vector fixation interval for sequential space-time signal processing against the background of combined interferences,” Radioelectron. Commun. Syst. 55, No. 10, 443 (2012). DOI:  https://doi.org/10.3103/S0735272712100020.CrossRefGoogle Scholar
  28. 28.
    I. V. Grubrin, I. U. Ligina, “Adaptive interference filtering in the multi-channel on-board systems,” Trudy MAI, No. 69, 1 (2013). URI: http://trudymai.ru/eng/published.php/published.php?ID=43335.Google Scholar
  29. 29.
    V. A. Grigor’ev, Combined Processing of Signals in Radio Communication Systems [in Russian] (Eko-Trends, Moscow, 2002).Google Scholar
  30. 30.
    D. M. Piza, Y. A. Zviahintsev, G. V. Moroz, “Method of compensating the active component of combined interference in coherent pulse radar,” Radioelectron. Commun. Syst. 59, No. 6, 251 (2016). DOI:  https://doi.org/10.3103/S0735272716060030.CrossRefGoogle Scholar
  31. 31.
    D. M. Piza, D. S. Semenov, G. V. Moroz, “Analysis of efficiency of adaptive polarizing filter under the simultaneous action of active and passive noise,” Radio Electronics, Computer Science, Control, No. 3, 20 (2017). DOI:  https://doi.org/10.15588/1607-3274-2017-3-2.Google Scholar
  32. 32.
    D. M. Piza, V. N. Lavrentiev, D. S. Semenov, “Method of forming of the classified training sample for automatic canceller of the interferences when using time-space filtering of signals,” Radio Electronics, Computer Science, Control, No. 3, 18 (2016). DOI:  https://doi.org/10.15588/1607-3274-2016-3-2.Google Scholar
  33. 33.
    D. M. Piza, G. V. Moroz, “Methods of forming classified training sample for adaptation of weight coefficient of automatic interference compensator,” Radioelectron. Commun. Syst. 61, No. 1, 32 (2018). DOI:  https://doi.org/10.3103/S0735272718010041.CrossRefGoogle Scholar
  34. 34.
    D. M. Piza, T. I. Bugrova, V. M. Lavrentiev, D. S. Semenov, “Selector of classified training samples for spatial processing of signals under the impact of combined clutter and jamming,” Radio Electronics, Computer Science, Control, No. 4, 26 (2017). DOI:  https://doi.org/10.15588/1607-3274-2017-4-3.Google Scholar
  35. 35.
    D. M. Piza, S. N. Romanenko, D. S. Semenov, “Correlation method for forming the training sample for adaptation of the spatial filter,” Radio Electronics, Computer Science, Control, No. 3, 34 (2018). DOI:  https://doi.org/10.15588/1607-3274-2018-3-4.Google Scholar
  36. 36.
    D. M. Piza, T. I. Bugrova, V. N. Lavrentiev, D. S. Semenov, “Method of forming classified training sample in case of spatial signal processing under influence of combined interference,” Radioelectron. Commun. Syst. 61, No. 7, 325 (2018). DOI:  https://doi.org/10.3103/S0735272718070051.CrossRefGoogle Scholar
  37. 37.
    Ting Wang, Yongjun Zhao, Jie Huang, Ke Jin, Kunfan Zhang, “A reduced-rank STAP algorithm for simultaneous clutter plus jamming suppression in airborne MIMO radar,” Proc. of 18th Int. Radar Symp., IRS, 28–30 June 2017, Prague, Czech Republic (IEEE, 2017). DOI:  https://doi.org/10.23919/IRS.2017.8008095.Google Scholar
  38. 38.
    Yu. I. Abramovich, V. G. Kachur, “Methods of alternate adaptive tuning of separate interference compensation systems,” J. Commun. Technol. Electron. 32, No. 10, 124 (1987).Google Scholar
  39. 39.
    Yu. I. Abramovich, V. G. Kachur, “Speed of response of alternate adaptive tuning of separate combined interference suppression systems,” J. Commun. Technol. Electron. 34, No. 12, 44 (1989).Google Scholar
  40. 40.
    R. Bellman, Introduction to Matrix Analysis, 2ed. (Society for Industrial and Applied Mathematics, 1997). DOI:  https://doi.org/10.1137/1.9781611971170.zbMATHGoogle Scholar
  41. 41.
    I. Stanimirovic, Computation of Generalized Matrix Inverses and Applications (Apple Academic Press, Waretown, NJ, 2017).zbMATHGoogle Scholar
  42. 42.
    M. Skolnik, Radar Handbook, 3rd ed. (McGraw-Hill, New York, 2008).Google Scholar
  43. 43.
    Gwilym M. Jenkins, Donald G. Watts, Spectral Analysis and Its Applications (Holden-Day, San Francisco, 1968).zbMATHGoogle Scholar
  44. 44.
    D. I. Lekhovytskiy, I. G. Kirillov, “Simulation of clutter by using pulse radar on the basis of processes of autoregression of an arbitrary order,” Syst. Obrob. Inf., No. 3, 90 (2008).Google Scholar
  45. 45.
    P. E. Gill, W. Murray (eds.), Numerical Methods for Constrained Optimization (London, Academic Press, 1974).Google Scholar
  46. 46.
    J. R. Rice, Matrix Calculations and Mathematical Software (McGraw-Hill, 1981).zbMATHGoogle Scholar
  47. 47.
    V. V. Voevodin, E. E. Tyrtyshnikov, Computational Processes with Toeplitz Matrices [in Russian] (Nauka, Moscow, 1987).zbMATHGoogle Scholar
  48. 48.
    D. I. Lekhovytskiy, “Generalized Levinson algorithm and universal lattice filters,” Radiophys. Quantum Electron. 35, No. 9–10, 509 (1992). DOI:  https://doi.org/10.1007/BF01044971.MathSciNetGoogle Scholar
  49. 49.
    J. P. Burg, “A new analysis technique for time series data,” NATO Advanced Study Institute on Signal Processing with Emphasis on Underwater Acoustics (Netherlands, 12–23 Aug. 1968).Google Scholar
  50. 50.
    F. Itakura, S. Saito, “Digital filtering techniques for speech analysis and synthesis,” Proc. of 7th Int. Congress Acoust., 1971, Budapest, Hungary. Budapest, Paper 25 C-I (1971), pp. 261–264.Google Scholar
  51. 51.
    B. Friedlander, “Lattice filters for adaptive processing,” Proc. IEEE 70, No. 8, 829 (1982). DOI:  https://doi.org/10.1109/PROC.1982.12407.CrossRefGoogle Scholar
  52. 52.
    D. I. Lekhovytskiy, D. S. Rachkov, A. V. Semeniaka, V. P. Riabukha, D. V. Atamanskiy, “Adaptive lattice filters. Part I. Theory of lattice structures,” Prikladnaya Radioelektronika 10, No. 4, 380 (2011).Google Scholar
  53. 53.
    D. I. Lekhovytskiy, Y. I. Abramovich, “Adaptive lattice filters for band-inverse (TVAR) covariance matrix approximations: theory and practical applications,” in: Proc. of 2009 Int. Radar Symp., IRS 2009, Hamburg, Germany (TUHH, Hamburg, 2009), pp. 535–539.Google Scholar
  54. 54.
    W.-H. Yang, S. H. Holan, C. K. Wikle, “Bayesian lattice filters for time-varying autoregression and time-frequency analysis,” Bayesian Analysis 11, No. 4, 977 (2016). DOI:  https://doi.org/10.1214/15-BA978.MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    M. T. Ozden, “Sequential convex combinations of multiple adaptive lattice filters in cognitive radio channel identification,” EURASIP J. Adv. Signal Process. 2018:45, 25 (2018). DOI:  https://doi.org/10.1186/s13634-018-0567-3.Google Scholar
  56. 56.
    D. I. Lekhovytskiy, D. S. Rachkov, A. V. Semeniaka, “K-rank modification of adaptive lattice filter parameters,” Proc. of 2015 IEEE Radar Conf., RadarCon, 10–15 May 2015, Arlington, USA (IEEE, 2015). DOI:  https://doi.org/10.1109/RADAR.2015.7130983.Google Scholar
  57. 57.
    H. Lev-Ari, T. Kailath, “Schur and Levinson algorithms for nonstationary processes,” Proc. of IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, ICASSP’81, 30 Mar.–1 Apr. 1981, Atlanta, USA (IEEE, 1981). DOI:  https://doi.org/10.1109/ICASSP.1981.1171194.Google Scholar
  58. 58.
    K. C. Sharman, T. S. Durrani, “Spatial lattice filter for high-resolution spectral analysis of array data,” IEE Proc. F - Commun., Radar and Signal Process. 130, No. 3, 279 (1983). DOI:  https://doi.org/10.1049/ip-f-1.1983.0047.CrossRefGoogle Scholar
  59. 59.
    H.-G. Beyer, B. Sendhoff, “Simplify your covariance matrix adaptation evolution strategy,” IEEE Trans. Evol. Comput. 21, No. 5, 746 (2017). DOI:  https://doi.org/10.1109/TEVC.2017.2680320.CrossRefGoogle Scholar
  60. 60.
    A. De Maio, D. Orlando, “An invariant approach to adaptive radar detection under covariance persymmetry,” IEEE Trans. Signal Process. 63, No. 5, 1297 (2015). DOI:  https://doi.org/10.1109/TSP.2014.2388441.MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    D. I. Lekhovytskiy, D. S. Rachkov, A. V. Semeniaka, D. V. Atamanskiy, V. P. Riabukha, “Quasioptimal algorithms for batch coherent signals interperiod processing against background clutter,” Proc. of Int. Radar Symp., IRS-2014, 16–18 June 2014, Gdansk, Poland (IEEE, 2014), pp. 25–30. DOI:  https://doi.org/10.1109/IRS.2014.6869195.Google Scholar
  62. 62.
    D. I. Lekhovytskiy, D. V. Atamanskiy, V. P. Riabukha, D. S. Rachkov, A. V. Semeniaka, “Combining target detection against the background of jamming signals and jamming signal DOA estimation,” Proc. of X Int. Conf. on Antenna Theory and Techniques, ICATT’2015, 21–24 Apr. 2015, Kharkiv, Ukraine (IEEE, 2015), pp. 36–40. DOI:  https://doi.org/10.1109/ICATT.2015.7136777.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Kvant Radar Systems Scientific Research InstituteKyivUkraine
  2. 2.Ivan Kozhedub Kharkiv National Air Force UniversityKharkivUkraine

Personalised recommendations