Advertisement

Radioelectronics and Communications Systems

, Volume 61, Issue 10, pp 454–466 | Cite as

Optical CDMA Coded STBC Based on Chaotic Technique in FSO Communication Systems

  • Lwaa Faisal Abdulameer
Article
  • 8 Downloads

Abstract

Free-Space Optical (FSO) can provide high-speed communications when the effect of turbulence is not serious. However, Space-Time-Block-Code (STBC) is a good candidate to mitigate this seriousness. This paper proposes a hybrid of an Optical Code Division Multiple Access (OCDMA) and STBC in FSO communication for last mile solutions, where access to remote areas is complicated. The main weakness effecting a FSO link is the atmospheric turbulence. The feasibility of employing STBC in OCDMA is to mitigate these effects. The current work evaluates the Bit-Error-Rate (BER) performance of OCDMA operating under the scintillation effect, where this effect can be described by the gamma-gamma model. The most obvious finding to emerge from the analysis is that the BER can be enhanced by orders of magnitude for different numbers of users and different values of scintillation effects using a MIMO channel as compared to Single-Input-Single-Output (SISO) one. The theoretical analysis of the derived BER, which is based on gamma-gamma model, is validated through the Monte Carlo simulation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Liu, P. T. Dat, K. Wakamori, M. Matsumoto, “A new scheme on time-diversity atmospheric OCDMA system over atmospheric turbulence channels,” Proc. of IEEE Globecom Workshop, 6–10 Dec. 2010, Miami, FL, USA (IEEE, 2010), pp. 1020–1025. DOI: 10.1109/GLOCOMW.2010.5700088.CrossRefGoogle Scholar
  2. 2.
    N. Boudriga, W. Abdallah, M. Hamdi, “Physical layer cryptography in optical networks: A lattice–based approach,” Proc. of 12th Int. Conf. on Transparent Optical Networks, 27 Jun.–1 Jul. 2010, Munich, Germany (IEEE, 2010), pp. 1–7. DOI: 10.1109/ICTON.2010.5549040.Google Scholar
  3. 3.
    A. Litvinenko, A. Lboltins, “Selection and performance analysis of chaotic spreading sequences for DS–CDMA systems,” Proc. of Advances in Wireless and Optical Communications, RTUWO, 3–4 Nov. 2016, Riga, Latvia (IEEE, 2016), pp. 38–45. DOI: 10.1109/RTUWO.2016.7821852.Google Scholar
  4. 4.
    L. Yang, G. Shou, Z. Qian, Y. Hu, T. Miki, “OCDMA–WDM–PON with two–level chaotic logistic–map as spread spectrum sequence,” Proc. of Joint Conf. on OECC/ACOFT, 7–10 Jul. 2008, Sydney, Australia (IEEE, 2008). DOI: 10.1109/OECCACOFT.2008.4610530.Google Scholar
  5. 5.
    S. Donati, C. R. Rirasso, “Introduction to the feature section on optical chaos and applications to cryptography,” IEEE J. Quantum Electronics 38, No. 9, 1138 (2002). DOI: 10.1109/JQE.2002.801951.CrossRefGoogle Scholar
  6. 6.
    M. P. Ninos, H. E. Nistazakis, G. S. Tombras, “On the BER performance of FSO links with multiple receivers and spatial jitter over gamma–gamma or exponential turbulence channels,” Optik 138, 269 (2017). DOI: 10.1016/j.ijleo.2017.03.009.CrossRefGoogle Scholar
  7. 7.
    J. Ma, K. Li, L. Tan, S. Yu, Y. Cao, “Exact error rate analysis of free–space optical communications with spatial diversity over Gamma–Gamma atmospheric turbulence,” J. Modern Optics 63, No. 3, 252 (2016). DOI: 10.1080/09500340.2015.1075618.CrossRefGoogle Scholar
  8. 8.
    E. Bayaki, R. Schober, R. K. Mallik, “Performance analysis of MIMO free–space optical systems in gamma–gamma fading,” IEEE Trans. Commun. 57, No. 11, 3415 (2009). DOI: 10.1109/TCOMM.2009.11. 080168.CrossRefGoogle Scholar
  9. 9.
    A. Garcia–Zambrana, “Error rate performance for STBC in free–space optical communications through strong atmospheric turbulence,” IEEE Commun. Lett. 11, No. 5, 390 (2007). DOI: 10.1109/LCOMM.2007.061980.CrossRefGoogle Scholar
  10. 10.
    K. Anbarasi, C. Hemanth, R. G. Sangeetha, “A review on channel models in free space optical communication systems,” Optics Laser Technol. 97, 161 (2017). DOI: 10.1016/j.optlastec.2017.06.018.CrossRefGoogle Scholar
  11. 11.
    J. Park, E. Lee, G. Yoon, “Average bit–error rate of the Alamouti scheme in gamma–gamma fading channels,” IEEE Photonic Technol. Lett. 23, No. 4, 269 (2011). DOI: 10.1109/LPT.2010.2100815.CrossRefGoogle Scholar
  12. 12.
    S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Selected Areas Commun. 16, No. 8, 1451 (1988). DOI: 10.1109/49.730453.CrossRefGoogle Scholar
  13. 13.
    T. Huang, L. Wang, W. Xu, G. Chen, “A multi–carrier M–ary differential chaos shift keying system with low PAPR,” IEEE Access 5, 18793 (2017). DOI: 10.1109/ACCESS.2017.2752238.CrossRefGoogle Scholar
  14. 14.
    A. J. Lawrance, G. Ohama, “Exact calculation of bit error rates in communication systems with chaotic modulation,” IEEE Trans. Circuits Systems I: Fundamental Theory Appl. 50, No. 11, 1391 (2003). DOI: 10.1109/TCSI.2003.818612.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    G. Kaddoum, A. J. Lawrance, P. Charge, D. Roviras, “Chaos communication performance: Theory and computation,” Circuit Syst. Signal Processing 30, No. 1, 185 (2011). DOI: 10.1007/s00034–010–9217–1.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    X. Yi, M. Yao, X. Wang, “MIMO FSO communication using subcarrier intensity modulation over double generalized gamma fading,” Optics Commun. 382, 64 (2017). DOI: 10.1016/j.optcom.2016.07.064.CrossRefGoogle Scholar
  17. 17.
    X.–L. Liu, D. En, L.–G. Wang, “An optical CDMA system based on chaotic sequences,” Optoelectronics Lett. 10, No. 2, 126 (2014). DOI: 10.1007/s11801–014–3191–y.CrossRefGoogle Scholar
  18. 18.
    X. Chen, D. Chen, Z. Wang, “Performance improvement of bandwidth–limited coherent OCDMA system,” Photon. Netw. Commun. 16, No. 2, 149 (2008). DOI: 10.1007/s11107–008–0126–1.CrossRefGoogle Scholar
  19. 19.
    X. Liu, C. Yu, X. Xin, Q. Zhang, “Generator of optical chaotic sequences,” Electronics Lett. 43, No. 21, 1159 (2007). DOI: 10.1049/el:20071812.CrossRefGoogle Scholar
  20. 20.
    E. Bayaki, R. Schober, R. K. Mallik, “Performance analysis of free–space optical systems in gamma–gamma fading,” Proc. of IEEE Global Telecommunication Conf., 30 Nov.–4 Dec. 2008, New Orlean, USA (IEEE, 2008), pp. 1–6. DOI: 10.1109/GLOCOM.2008.ECP.548.Google Scholar
  21. 21.
    J. Feng, X. Zhao, “Performance analysis of OOK–based FSO systems in Gamma–Gamma turbulence with imprecise channel models,” Optics Commun. 402, 340 (2017). DOI: 10.1016/j.optcom.2017.06.016.CrossRefGoogle Scholar
  22. 22.
    A. J. Lawrance, J. Yao, “Likelihood–based demodulation in multi–user chaos shift keying communication,” Circuits Syst. Signal Process. 27, No. 6, 847 (2007). DOI: 10.1007/s00034–008–9063–6.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    M. Shinozuka, A. Uchida, T. Ogawa, S. Yoshimori, F. Kannari, “Chaotic on–off keying method in microchip lasers for secure communications,” Proc. of Conf. on Lasers and Electro–Optics, 15–19 Jul. 2001, Chiba, Japan (IEEE, 2001), Vol. 2, pp. II–390–II–391, DOI: 10.1109/CLEOPR.2001.970998.Google Scholar
  24. 24.
    L. F. Abdulameer, U. Sripati, M. Kulkarni, “CSK based STBC–CDMA system: design and performance evaluation,” Association of Arab Universities Journal of Engineering Sciences 24, No. 1, 13 (2017). URI: https://www.jaaru.org/index.php/auisseng/article/view/21.Google Scholar
  25. 25.
    G. Kaddoum, D. Roviras, P. Charge, D. Fournier–Prunaret, “Robust synchronization for asynchronous multi–user chaos–based DS–CDMA,” Signal Process. 89, No. 5, 807 (2009). DOI: 10.1016/j.sigpro.2008.10.023.CrossRefzbMATHGoogle Scholar
  26. 26.
    M. Premaratne, F.-C. Zheng, “Orthogonal space-time block codes for free-space IM/DD optical links,” Electronics Lett. 43, No. 15, 822 (2007). DOI: 10.1049/el:20073712.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.University of BaghdadBaghdadIraq

Personalised recommendations