Radioelectronics and Communications Systems

, Volume 61, Issue 10, pp 444–453 | Cite as

Electrodynamic Characteristics of T-Mode Coaxial Waveguides with Elliptical Cross-Section

  • I. V. ZavislyakEmail author
  • M. A. Popov


The paper presents a rigorous solution of the electrodynamic problem for T-type waves in a coaxial waveguide of elliptical cross-section. The solution was obtained using the original modified elliptical coordinate system. The advantages of this approach are convenient expressions for the electrodynamic characteristics of the transmission line and a simple transition to a particular case of a circular waveguide. The authors have obtained explicit expressions for the impedance, transmitted power and propagation losses of the coaxial elliptical waveguide with T-type waves, and have analyzed their dependences on the size and shape of the cross-section of the transmission line. The graphs of the dependences of these characteristics on the normalized parameters that define the shape and size of the waveguide allow choosing the geometric dimensions of the transmission line based on the requirements of a given characteristic impedance, limiting transmitted power or losses. It is shown that at large eccentricities, the energy in waveguides with similar sizes of internal and external conductors and low wave resistance is concentrated near the foci, which allows using such waveguides as the basis for developing effective probes for radio-spectroscopic studies.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. K. Bhattacharyya, L. Shafai, “Theoretical and experimental investigation of the elliptical annual ring antenna,” IEEE Trans. Antennas Propag. 36, No. 11, 1526 (1988). DOI: 10.1109/8.9700.CrossRefGoogle Scholar
  2. 2.
    Y. Xu, F. M. Ghannouchi, R. G. Bosisio, “Theoretical and experimental study of measurement of microwave permittivity using open ended elliptical coaxial probes,” IEEE Trans. Microwave Theory Tech. 40, No. 1, 143 (1992). DOI: 10.1109/22.108333.CrossRefGoogle Scholar
  3. 3.
    K. Sun, J. M. Tranquilla, “Study of elliptical annular microstrip antenna using full Mathieu formulation,” Proc. Antennas and Propagation Soc. Int. Symp., 28 June–2 July 1993, Ann Arbor, USA (IEEE, 1993), Vol. 2, pp. 944–947. DOI: 10.1109/APS.1993.385193.Google Scholar
  4. 4.
    T. Xiong, R. Yan, “Propagation characteristics of confocal elliptical coaxial lines filled with multilayered media,” Progress in Electromagnetics Research Symp., 22–26 Aug. 2005, Hangzhou, China (2005), pp. 147–150. DOI: 10.2529/PIERS041207103750.Google Scholar
  5. 5.
    A. Fanti, M. Simone, L. Deias, “Analysis and optimization of elliptic ridged waveguide with FDFD technique and PSO algorithm,” Appl. Computational Electromagnetics Soc. J. 31, No. 8, 860 (2016). URI: http://www. aces––8–1.Google Scholar
  6. 6.
    A. Antikainen, R.–J. Essiambre, G. P. Agrawal, “Determination of modes of elliptical waveguides with ellipse transformation perturbation theory,” Optica 4, No. 12, 1510 (2017). DOI: 10.1364/OPTICA.4.001510.CrossRefGoogle Scholar
  7. 7.
    E. Ip, G. Milione, M.–J. Li, N. Cvijetic, K. Kanonakis, J. Stone, G. Peng, X. Prieto, C. Montero, V. Moreno, J. Liñares, “SDM transmission of real–time 10GbE traffic using commercial SFP + transceivers over 0.5km elliptical–core few–mode fiber,” Optics Express 23, No. 13, 17120 (2015). DOI: 10.1364/OE.23.017120.CrossRefGoogle Scholar
  8. 8.
    T. Rozzi, L. Pierantoni, M. Ronzitti, “Analysis of the suspended strip in elliptical cross section by separation of variables,” IEEE Trans. Microwave Theory Tech. 45, No. 10, 1778 (1997). DOI: 10.1109/22.641728.CrossRefGoogle Scholar
  9. 9.
    J.–W. Lee, J.–T. Chen, “A semianalytical approach for a nonconfocal suspended strip in an elliptical waveguide,” IEEE Trans. Microwave Theory Tech. 60, No. 12, 3642 (2012). DOI: 10.1109/TMTT.2012.2221138.CrossRefGoogle Scholar
  10. 10.
    M. King, J. Wiltse, “Coaxial transmission lines of elliptical cross section,” IRE Trans. Antennas Propag. 9, No. 1, 116 (1961). DOI: 10.1109/TAP.1961.1144942.CrossRefGoogle Scholar
  11. 11.
    F. A. Alhargan, S. R. Judah, “Mode charts for confocal annular elliptic resonators,” IEE Proc.–Microwaves, Antennas Propag. 143, No. 4, 358 (1996). DOI: 10.1049/ip–map:19960539.CrossRefGoogle Scholar
  12. 12.
    R. Navarro, V. E. Boria, B. Gimeno, A. Coves, M. Ferrando, “Full modal analysis of confocal coaxial elliptical waveguides,” IEE Proc.–Microwaves, Antennas Propag. 147, No. 5, 374 (2000). DOI: 10.1049/ip–map: 20000737.CrossRefGoogle Scholar
  13. 13.
    J. C. Gutierrez–Vega, R. M. Rodriguez–Dagnino, S. Chavez–Cerda, “Attenuation characteristics in confocal annular elliptic waveguides and resonators,” IEEE Trans. Microwave Theory Tech. 50, No. 4, 1095 (2002). DOI: 10.1109/22.993411.CrossRefGoogle Scholar
  14. 14.
    L. Changhong, L. Long, “A new characteristic impedance perturbation method for finding attenuation constants,” Microwave Optical Technol. Lett. 32, No. 4, 243 (2002). DOI: 10.1002/mop.10143.CrossRefGoogle Scholar
  15. 15.
    G. P. Golovach, M. A. Popov, Y. Roussigne, A. A. Stashkevich, I. V. Zavislyak, “Analytical theory of the dipole–exchange oscillations in long ferromagnetic nanowires of elliptical cross–section in a transverse external magnetic field,” JMMM 382, 252 (2015). DOI: 10.1016/j.jmmm.2015.01.077.CrossRefGoogle Scholar
  16. 16.
    M. A. Popov, “Parametric excitation of surface magnetostatic modes in an axially magnetized elliptic cylinder under longitudinal pumping,” Ukr. J. Phys. 60, No. 5, 452 (2015). DOI: 10.15407/ujpe60.05.0452.CrossRefGoogle Scholar
  17. 17.
    M. A. Popov, “Equilibrium bi–domain configuration in cylindrical magnetic microparticles,” Eur. Phys. J. B 90, No. 3, 55–1 (2017). DOI: 10.1140/epjb/e2017–70748–9.Google Scholar
  18. 18.
    A. D. Grigoriev, Electrodynamics and Microwave Technology [in Russian] (Lan’, St. Petersburg, 2007).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Taras Shevchenko National University of KyivKyivUkraine

Personalised recommendations