Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Numerical Simulation of Stoichiometric Thermodynamic Equilibrium Model of a Downdraft Biomass Air Gasifier

  • 9 Accesses

Abstract

In the present study, a stoichiometric thermodynamic equilibrium model has been introduced for downdraft biomass air gasifiers. Experimental data from five pilot scale downdraft gasifiers, that use different types of biomass fuels, are compared with the findings of the model. It is presented that the developed model is efficiently simulating H2, CO, CH4, and CO2, volume fractions and the heating value of synthesis gas. The minimum error of comparisons has been found about 1% and the maximum error was obtained to be less than 25%. The level of sensitivity evaluation has been performed to the model to check out the effect of gasifier temperature, biomass moisture content, air to fuel ratio and equivalence ratio on the syngas form and lower heating value of syngas from the downdraft gasifier. The model results are compared with several existing experimental data of the literature. It is concluded that the findings of the study are a good candidate to model the downdraft gasifiers.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    Hossen, M., Rahmana, A.H.M.S., Kabir, A.S., Hasan, M.M.F., and Ahmed, S., Renewable Sustainable Energy Rev., 2017, vol. 67, p. 94. https://doi.org/10.1016/j.rser.2016.09.008

  2. 2

    Akyürek, Z., J. Electrochem. Soc., 2018, vol. 2, p. 159. https://doi.org/10.30521/jes.455325

  3. 3

    Akyürek, Z., Güngör, A., and Akyüz, A., Sci. J. Mehmet Akif Ersoy Univ., 2019, vol. 2, p. 15

  4. 4

    Menon, V. and Rao, M., Prog. Energy Combust. Sci., 2012, vol. 38, p. 522. https://doi.org/10.1016/j.pecs.2012.02.002

  5. 5

    Taba, L.E., Irfan, M.F., Daud, W.A.M.W., and Chakrabarti, M.H., Renewable Sustainable Energy Rev., 2012, vol. 16, p. 5584. https://doi.org/10.1016/j.rser.2012.06.015

  6. 6

    Sulaiman, S.A., Roslan, R., Inayat, M., and Naz, M.Y., J. Energy Inst., 2018, vol. 91, p. 779. https://doi.org/10.1016/j.joei.2017.05.003

  7. 7

    Sikarwar, S.V., Zhao, M., Clough, P., Yao, J., Zhong, X., Memon, M.Z., Shah, N., Anthony, E.J., and Fennell, P.S., Energy Environ. Sci., 2016, vol. 9, p. 2939. doi 1039/c6ee00935b

  8. 8

    Heidenreich, S. and Foscolo, P.U., Prog. Energy Combust. Sci., 2015, vol. 46, p. 72. https://doi.org/10.1016/j.pecs.2014.06.002

  9. 9

    Diyoke, C., Gao, N., Aneke, M., Wang, M., and Wu, C., Appl. Therm. Eng., 2018, vol. 142, p. 444. https://doi.org/10.1016/j.applthermaleng.2018.06.079

  10. 10

    You, S., Tong, H., Armin-Hoiland, J., Tong, Y.W., and Wang, C.H., Appl. Energy, 2017, vol. 208, p. 495. https://doi.org/10.1016/j.apenergy.2017.10.001

  11. 11

    Yan, W.C., Shen, Y., You, S., Sim, S.H., Luo, Z.H., Tong, Y.W., and Wang, C.H., J. Clean. Prod., 2018, vol. 178, p. 476. https://doi.org/10.1016/j.jclepro.2018.01.009

  12. 12

    Iribarren, D., Susmozas, A., Petrakopoulou, F., and Dufour, J., J. Clean. Prod., 2014, vol. 69, p. 165. https://doi.org/10.1016/j.clepro.2014.01.068

  13. 13

    Klimantos, P., Koukouzas, N., Katsiadakis, A., and Kakaras, E., Energy, 2009, vol. 34, p. 708. https://doi.org/10.1016/j.energy.2008.04.009

  14. 14

    Patra, T.K. and Sheth, P.N., Renewable Sustainable Energy Rev., 2015, vol. 50, p. 583. https://doi.org/10.1016/j.rser.2015.05.012

  15. 15

    Ong, Z., Cheng, Y., Maneerung, T., Yao, Z., Tong, Y.W., Wang, C.H., and Dai, Y., AIChE J., 2015, vol. 65, p. 2508. https://doi.org/10.1002/aic.14836

  16. 16

    Galindo, A.L., Lora, E.S., Andrade, R.V., Giraldo, S.Y., Jaén, R.L., and Cobas, V.M., Biomass Bioenergy, 2014, vol. 61, p. 236. https://doi.org/10.1016/j.biombioe.2013.12.017

  17. 17

    Sheth, P.N. and Babu, B.V., Bioresour. Technol., 2009, vol. 100, p. 3127. https://doi.org/10.1016/j.biortech.2009.01.024

  18. 18

    Zainal, Z.A. and Lean, C.H., Seetharamu, K.N., Energy Convers. Manage., 2001, vol. 42, p. 1499. https://doi.org/10.1016/S0196-8904(00)00078-9

  19. 19

    George, J., Arun, P., and Muraleedharan, C., Procedia Technol., 2016, vol. 25, p. 982. https://doi.org/10.1016/j.protcy.2016.08.194

  20. 20

    Jarah, T.H., Aye, L., Fuller, R.J., and Steward, D.F., Biomass Bioenergy, 2003, vol. 25, p. 459. https://doi.org/10.1016/S0961-9534(03)00037-0

  21. 21

    Sarker, S. and Nielsen, H.K., Int. J. Environ. Sci. Technol., 2015, vol. 12, p. 2119. https://doi.org/10.1007/s13762-014-0618-8

  22. 22

    Li, X., Grace, J., Lim, C., Watkinson, A., Chen, H., and Kim, J., Biomass Bioenergy, 2004, vol. 26, p. 171. https://doi.org/10.1016/S0961-9534(03)00084-9

  23. 23

    Sharma, S. and Sheth, P.N., Energy Convers. Manage., 2016, vol. 110, p. 307. https://doi.org/10.1016/j.enconman.2015.12.030

  24. 24

    Melgar, A., Pérez, J.F., Laget, H., and Horillo, A., Energy Convers. Manage., 2007, vol. 48, p. 59. https://doi.org/10.1016/j.enconman.2006.05.004

  25. 25

    Fermoso, J., Arias, B., Gil, M.V., Plaza, M.G., Pevida, C., Pis, J.J., and Rubiera, F., Bioresour. Technol., 2010, vol. 101, p. 3230. https://doi.org/10.1016/j.biortech.2009.12.035

  26. 26

    Giltrap, D.L., McKibbin, R.G, and Barnes, R.G., Sol. Energy, 2003, vol. 74, p. 85. https://doi.org/10.1016/S0038-092X(03)00091-4

  27. 27

    Grønli, M.G., Energy Fuels, 2000, vol. 14, p. 791. https://doi.org/10.1021/ef990176q

  28. 28

    Babu, B.V. and Sheth, P.N., Energy Convers. Manage., 2006, vol. 47, p. 2602. doi. https://doi.org/10.1016/j.enconman.2005.10.032

  29. 29

    Sharma, T., Maya, D.M.Y., Nascimento, F.R.M., Shi, Y., Ratner, A., Lora, E.E.S., Neto, L.J.M., Palacios, J.C.E., and Andrade, R.V., Energies, 2018, vol. 11, p. 3225. https://doi.org/10.3390/en11113225

  30. 30

    Gungor, A., Int. J. Hydrogen Energy, 2011, vol. 36, p. 6592. https://doi.org/10.1016/j.ijhydene.2011.02.096

  31. 31

    Gungor, A., Ozbayoglu, M., Kasnakoglu, C., Biyikoglu, A., and Uysal, B.Z., Chem. Pap., 2012, vol. 66, p. 677. https://doi.org/10.2478/s11696-012-0164-0

  32. 32

    La Villetta, M., Costa, M., and Massarotti, N., Renewable Sustainable Energy Rev., 2017, vol. 74, p. 71. https://doi.org/10.1016/j.rser.2017.02.027

  33. 33

    Gungor, A., Energy Convers. Manage., 2013, vol. 65, p. 574. https://doi.org/10.1016/j.enconman.2012.09.023

  34. 34

    Gungor, A. and Yildirim, U., Comput. Chem. Eng., 2013, vol. 48, p. 234. https://doi.org/10.1016/j.compchemeng.2012.09.012

  35. 35

    Azzone, E., Morini, M., and Pinelli, M., Renewable Energy, 2012, vol. 46, p. 248. https://doi.org/10.1016/j.renene.2012.03.017

  36. 36

    Zainal, Z.A., Rifau, A., Quadir, G.A., and Seetharamu, K.N., Biomass Bioenergy, 2002, vol. 23, 283-9. https://doi.org/10.1016/S0961-9534(02)00059-4

  37. 37

    Jarungthammachote, S. and Dutta, A., Energy, 2007, vol. 32, p. 1660. https://doi.org/10.1016/j.energy.2007.01.010

  38. 38

    Barman, N.S., Ghosh, S., and Sudipta, D., Bioresour. Technol., 2012, vol. 107, p. 505. https://doi.org/10.1016/j.biortech.2011.12.124

  39. 39

    Narvaez, I., Orio, A., Corella, J., and Aznar, M.P., Ind. Eng. Chem. Res., 1996, vol. 35, p. 2110. https://doi.org/10.1021/ie9507540

  40. 40

    NIST-JANAF thermochemical tables. http://kinetics.nist.gov/janaf. Accessed January 07, 2019.

  41. 41

    Simone, M., Barontini, F., Nicolella, C., and Tognotti, L., Proc. European Combustion Meeting “Experimental Characterization of the Performance of a Downdraft Biomass Gasifier,” Cardiff, 2011, p. 1.

  42. 42

    McKendry, P., Bioresour. Technol., 2002, vol. 83, p. 55. https://doi.org/10.1016/S0960-8524(01)00120-1

  43. 43

    Altafini, C.R., Wander, P.R., and Barreto, R.M., Energy Convers. Manage., 2003, vol. 44, p. 2763. doihttps://doi.org/10.1016/S0196-8904(03)00025-6

  44. 44

    Kirsanovs, V., Zandeckis, A., Blumberga, D., and Veidenbergs, I., Proc. 27th ECOS “The Influence of Temperature, Equivalence Ratio and Fuel Moisture Content on Gasification Process: A Review,” Turku, 2014, p. 15.

  45. 45

    Mounturis, A., Voutsas, E., and Tassios, D., Energy Convers. Manage., 2006, vol. 47, p. 1723. https://doi.org/10.1016/j.enconman.2005.10.015

  46. 46

    Antonopoulos, I., Karagiannides, A., Gkouletsos, A., and Perkoulidis, G., Waste Manage., 2012, vol. 32, p. 710. https://doi.org/10.1016/j.wasman.2011.12.015

  47. 47

    Kirsanovs, V., Blumberga, D., Veidenbergs, I., Rochas, C., Vigants, E., and Vigants, G., Energy Procedia, 2017, vol. 128, p. 332. https://doi.org/10.1016/j.egypro.2017.08.321

  48. 48

    Kumar, A., Jones, D.D., and Hanna, M.A., Energies, 2009, vol. 2, p. 556. https://doi.org/10.3390/en20300556

  49. 49

    Michailos, S. and Zabaniotou, A., J. Sustainable Bioenergy Syst., 2012, vol. 2, p. 145. https://doi.org/10.4236/jsbs.2012.24021

  50. 50

    Lv, P.M., Xiong, Z.H., Chang, J., Wu, C.Z., Chen, Y., and Zhu, J.X., Bioresour. Technol., 2004, vol. 95, p. 95. https://doi.org/10.1016/j.biortech.2004.02.003

  51. 51

    Sales, C.A.V.B., Maya, D.M.Y., Lora, E.E.S., Jaen, R.L., Reyes, A.M.M., Gonzalez, A.M., Andrade, R.V., and Martinez, J.D., Energy Convers. Manage., 2017, vol. 145, p. 314. https://doi.org/10.1016/j.enconman.2017.04.101

Download references

ACKNOWLEDGMENTS

The authors would like to thank Pak-Turk Researchers Mobility Grant Program (PH-1-MG-9/PAK_TURK/R&D/HEC/2017).

Author information

Correspondence to Z. Akyurek or A. Akyuz or M. Y. Naz or S. A. Sulaiman or B. C. Lütfüoğlu or A. Gungor.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akyurek, Z., Akyuz, A., Naz, M.Y. et al. Numerical Simulation of Stoichiometric Thermodynamic Equilibrium Model of a Downdraft Biomass Air Gasifier. Solid Fuel Chem. 53, 426–435 (2019). https://doi.org/10.3103/S0361521919070012

Download citation

Keywords:

  • biomass
  • gasification
  • downdraft gasifier
  • modeling