Advertisement

Solid Fuel Chemistry

, Volume 53, Issue 3, pp 190–196 | Cite as

Structure Simulation and Calculation of the Energy of Interaction of the Fragments of Cellulose Macromolecules

  • A. M. Gyul’malievEmail author
  • R. Z. SafievaEmail author
  • V. A. VinokurovEmail author
  • O. P. ParenagoEmail author
Article

Abstract

Quantum chemistry methods were used to calculate the energy parameters of an elementary unit and a cellulose macromolecule dimer (cellobiose), and structure simulation was performed and the energy of interaction between the fragments of native cellulose macromolecules was calculated. It was established that the trans conformation of cellobiose is more stable than the cis conformation by 6.7 kcal/mol. Differences in the calculated and real (according to literature data) IR spectra of cellulose were related to the presence of intramolecular and intermolecular hydrogen bonds in the native structure. It was shown that the interaction of individual fragments of cellulose macromolecules from eight monomer units is due to the manifestation of intramolecular hydrogen bonds. It was found that the energies of intermolecular interactions ∆Е essentially depend on the terminal groups X in the cellulose macromolecule fragments, and they are –26, 49, and ‒32 kcal/mol for X = –H, –COOH, and –COH, respectively. The structure of the interacting fragments of cellulose macromolecules can be regulated by replacing the hydrogen atoms of hydroxyl or terminal groups of the macromolecules with functional groups that do not form intramolecular hydrogen bonds and impede self-organization into fibrillar structures. It was shown that compounds with a high electron affinity or a negative energy of the lower vacant molecular orbital are the best reagents for complexation reactions with cellulose.

Keywords:

quantum chemistry methods cellulose macromolecule biopolymer elementary unit cellobiose IR spectrum hydrogen bonds energy parameters 

Notes

REFERENCES

  1. 1.
    Bledzki, A.K. and Gassan, J., Progr. Polym. Sci., 1999, vol. 24, no. 2, p. 221.CrossRefGoogle Scholar
  2. 2.
    Mohanty, A.K., Misra, M., and Hinrichsen, G., Macromolec. Mater. Eng., 2000, vol. 276, no. 1, p. 1.Google Scholar
  3. 3.
    Moon, R.J., Martini, A., Nairn, J., Simonsen, J., and Youngblood, J., Chem. Soc. Rev., 2011, vol. 40, no. 7, p. 3941.CrossRefGoogle Scholar
  4. 4.
    Martin-Alfonso, J.E., Nunez, N., Valencia, C., Franco, J.M., and Diaz, M.J., J. Industr. Eng. Chem., 2011, no. 17, p. 818.Google Scholar
  5. 5.
    Sanchez, R., Franco, J.M., Delgado, M.A., Valencia, C., and Gallegos, C., Carbohydr. Polym., 2011, vol. 83, p. 151.CrossRefGoogle Scholar
  6. 6.
    Nevell, T.P. and Zeronian, S.H., Cellulose Chemistry and Its Applications, New York: Wiley, 1985.Google Scholar
  7. 7.
    Battista, O.A., Industr. Eng. Chem., 1950, vol. 42, no. 3, p. 502.CrossRefGoogle Scholar
  8. 8.
    Haensel, T., Reinmoller, M., Lorenz, P., Beenken, W.J.D., Krischok, S., and Syed Imad-Uddin, A., Cellulose, 2012, vol. 19, no. 3, p. 1005.CrossRefGoogle Scholar
  9. 9.
    Akman, F., Cellulose Chem. Technol., 2017, vol. 51, nos. 3–4, p. 253.Google Scholar
  10. 10.
    Kocheva, L.S., Extended Abstract of Doctoral (Chem.) Dissertation, Arkhangel’sk: Arkh. State Techn. Univ., 2008.Google Scholar
  11. 11.
    Granovsky, A.A., GAMESS v.7.1. http://classic.chem.msu.su/gran/games/index.htmlGoogle Scholar
  12. 12.
    Ivanov-Omskii, V.I., Gerasyuta, S.M., and Ivanova, E.I., Izv. St.-Peterb. Lesotekhn. Akad., 2017, no. 218, p. 199.Google Scholar
  13. 13.
    Kačuráková, M. and Wilson, R.H., Carbohydrate Polym., 2001, vol. 44, no. 4, p. 291.  https://doi.org/10.1016/S0144-8617(00)00245-9 CrossRefGoogle Scholar
  14. 14.
    Ali, M., et al., Polymer., 2001, vol. 42, no. 7, p. 2893.CrossRefGoogle Scholar
  15. 15.
    Nugmanov, O.K., Grigor’eva, N.P., and Lebedev, N.A., Khim. Rastit. Syr’ya, 2013, no. 1, p. 40.Google Scholar
  16. 16.
    Langkilde, F.W. and Svantesson, A., J. Pharm. Biomed. Anal., 1995, vol. 13, nos. 4–5, p. 409.CrossRefGoogle Scholar
  17. 17.
    Jiang, J.H., et al., Anal. Chem., 2002, vol. 74, no. 14, p. 3555.CrossRefGoogle Scholar
  18. 18.
    Peng, B.L., Dhar, N., Liu, H.L., and Tam, K.C., Can. J. Chem. Eng., 2011, vol. 89, no. 5, p. 1191.CrossRefGoogle Scholar
  19. 19.
    Eichhorn, S.J., et al., J. Mater. Sci., 2010, vol. 45, no. 1, p. 1.CrossRefGoogle Scholar
  20. 20.
    Dufresne A., Curr. Opin. Colloid In. Sci., 2017, vol. 29, p. 1.CrossRefGoogle Scholar
  21. 21.
    Dufresne, A., Current Opinion in Colloid & Interface Sci, 2017, vol. 29, p. 1.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia
  2. 2.Gubkin State University of Oil and GasMoscowRussia
  3. 3.Nonprofit Partnership Technopark of Gubkin UniversityMoscowRussia

Personalised recommendations