Advertisement

Digital Environment: Information Analytical Postprocessing Using the Scientometric and Data Analysis Methods

  • O. V. SyuntyurenkoEmail author
Article

Abstract

This article studies the macrostructure and dynamics of the growth of the global digital environment. It presents the possibilities and application areas of scientometrics and data analysis methods for the production of information and analytical products and services. It briefly analyzes the base of potential data sources for the problems of analytical postprocessing and prospective approaches to more in-depth information processing and new knowledge retrieval. Considering the rapid development of the online infrastructure of science and digital transformation of the information space, the main conceptual theses of implementation of technologies and information analytical postprocessing systems are formulated. Theoretical and applied aspects of analytical postprocessing within the structure of Big Data technologies are discussed. Some determinant factors of implementation of domestic Digital Economy of The Russian Federation program are presented. The goal of this work was to demonstrate the potential and system role in the formation of the new information environment.

Keywords:

digital environment information analytical postprocessing scientometrics data analysis prediction social networks supercomputing Big Data sociodynamics classification systems risks 

Notes

FUNDING

This work was funded by the Russian Scientific Foundation, grant no. 17-07-153.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    The growth of information—realities of the digital universe, Tekhnol. Sredstva Svyazi, 2013, no. 1. http://www.tssonline.ru/articles2/fix-corp/rost-obema-informatsii-. Accessed May 27, 2018.Google Scholar
  2. 2.
    Syuntyurenko, O.V., The digital enviroment: The trends and risks of development, sci. Tech. Inf. Process., 2015, vol. 42, no. 1, pp. 24–29.CrossRefGoogle Scholar
  3. 3.
    The development of mobile Internet as predicted by Cisco. http://1234g.ru/novosti/rasvitie-mobilnogo-interneta. Accessed May 27, 2018.Google Scholar
  4. 4.
    Kusaikin, D., Global network traffic: the present and the future, 2017. https://Nag.ru/articles/article/31463/mirovoy-setevoy-trafik-nast. Accessed May 27, 2018.Google Scholar
  5. 5.
    Big information explosion. The size of Internet content is rapidly changing the infosphere of the Earth, Russ. Rep., 2017, no. 2, pp. 52–53.Google Scholar
  6. 6.
    Brynjolfsson, E. and McAfee, A., The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies, New York: Norton & Company, 2016.Google Scholar
  7. 7.
    Fursov, A.I., Vodorazdel. Budushchee, kotoroe uzhe nastupilo (Watershed. A Future That Is Already Here), Moscow: Kn. mir, 2018.Google Scholar
  8. 8.
    Borisova, L.F. and Syuntyurenko, O.V., VINITI RAN Abstract Database: Prospects of information postprocessing using methods of data analysis, Sci. Tech. Inf. Process., 2007, vol. 34, no. 6, pp. 278–283.CrossRefGoogle Scholar
  9. 9.
    Syuntyurenko, O.V., Making information and analytical products and services using the methods of scientometrics and data analysis, Materialy Mezhdunarodnoi konferentsii k 65-letiyu VINITI RAN “Informatsiya v sovremennom mire” (Proc. Int. Conf. on the 65th Anniversary of the VINITI RAS “Information in the Modern World”), Moscow, 2017, pp. 317–321.Google Scholar
  10. 10.
    Tukey, J.W., Exploratory Data Analysis, Addison-Wesley Publishing Company, 1977.zbMATHGoogle Scholar
  11. 11.
    Mosteller, F. and Tukey, J.W., Data Analysis and Regression: A Second Course in Statistics, Pearson, 1977.Google Scholar
  12. 12.
    Syuntyurenko, O.V., Theoretical and applied aspects of automating multivariate analysis procedures, Autom. Doc. Math. Linguist., 2018, vol. 52, no. 6, pp. 275–281.CrossRefGoogle Scholar
  13. 13.
    Kalachikhin, P.A., A methodology for the scientometric expert evaluation of research results, Autom. Doc. Math. Linguist., 2017, vol. 51, no. 2, pp. 53–61.CrossRefGoogle Scholar
  14. 14.
    Kalachikhin, P.A., The principles of the design of the state scientometric system, Autom. Doc. Math. Linguist., 2016, vol. 50, no. 4, pp. 161–172.CrossRefGoogle Scholar
  15. 15.
    Nardo, M., Saisana, M., Saltelli, A., Tarantola, S., Hoffmann, A., and Giovannini, E., Handbook on constructing composite indicators, in OECD Statistics Working Papers, 2005, vol. 3.Google Scholar
  16. 16.
    Kogalovskii, M.R. and Parinov, S.I., A new data source for scientometric studies, Trudy 15-i Vserossiiskoi nauchnoi konferentsii “Elektronnye biblioteki: perspektivnye metody i tekhnologii, elektronnye kollektsii”—RCDL-2013 (Yaroslavl’, Rossiya, 14–17 oktyabrya 2013 g.) (Proc. 15th All-Russ. Sci. Conf. Electronic Libraries: Advanced Methods and Technologies, Digital Collections, RCDL-2013 (Yaroslavl, Russia, October 14–17, 2013)), Yaroslavl, 2013, pp. 107–117.Google Scholar
  17. 17.
    Antoshkova, O.A., Beloozerov, V.N., Dmitrieva, E.Yu., et al., Building the ontology of information resources in the form of a network of bibliographic classifications, Perspektivnye napravleniya issledovanii i kriticheskie tekhnologii v klassifikatsionnykh sistemakh: Nauchno-prakticheskaya konferentsiya s inostrannym uchastiem (25–27 okt. 2017 g.) (Perspective Research Directions and Critical Technologies in Classification Systems: Scientific-Practical Conference with Foreign Participation (October 25–27, 2017)), Moscow, 2017, pp. 20–25.Google Scholar
  18. 18.
    Kondratiev, N.D., Bol’shie tsikly kon"yunktury i teoriya predvideniya (Great Surges of Business Climate and Anticipation Theory), Moscow: Ekonomika, 2002.Google Scholar
  19. 19.
    Perez, C., Technological Revolutions and Financial Capital: The Dynamics of Bubbles and Golden Ages, London: Elgar, 2002.CrossRefGoogle Scholar
  20. 20.
    Glaz’ev, S. and Mikerin, G., Dlinnye volny NTP i sotsial’no-ekonomicheskoe razvitie (Long Waves of the Scientific and Technical Progress and Socio-Economic Development), Moscow: Nauka, 1989, pp. 5–9.Google Scholar
  21. 21.
    Ivanov, V. and Malinetskii, G., Digital economy: Myths, reality, and prospects, in Tsifrovaya tsivilizatsiya. Rossiya i “elektronnyi mir” XXI veka (Digital Civilization. Russia and the “Electronic World” of the 21st Century), Moscow: Izborskii klub, Kn. mir, 2018.Google Scholar
  22. 22.
    Mesropyan, V.R. and Ovsyannikov, M.V., Prospects for the application of scientometric methods for forecasting, Sci. Tech. Inf. Process., 2014, vol. 41, no. 1, pp. 38–46.CrossRefGoogle Scholar
  23. 23.
    Avdulov, A.N. and Kul’kin, A.M., Finansirovanie nauki v razvitykh stranakh mira (Science Funding in Developed Countries), Moscow: Inst. Nauchn. Inf. Obshchestv. Nauk Ross. Akad. Sci., 2007.Google Scholar
  24. 24.
    Syuntyurenko, O.V. and Gilyarevskii, R.S., Using the methods of scientometrics and comparative data analysis for managing research in thematic areas, Nauchno-Tekh. Inf., Ser. 2, 2016, no. 12, pp. 1–12.Google Scholar
  25. 25.
    Kalachikhin, P.A., Scientometric instruments of research funding, Sci. Tech. Inf. Process., 2018, vol. 45, no. 1, pp. 28–34.CrossRefGoogle Scholar
  26. 26.
    Syuntyurenko, O.V., Funding for basic research: A conceptual image of a decision support system using scientometrics and data analysis methods, Inf. Primen., 2018, vol. 12, no. 1, pp. 118–127.Google Scholar
  27. 27.
    Drozdova, K.A., Machine translation: History, classification, and methods, in Filologicheskie nauki v Rossii i za rubezhom: Materialy III Mezhdunar. nauch. konf. (Philological Sciences in Russia and Abroad: Proc. III Int. Sci. Conf.), St. Petersburg, 2015, pp. 139–141. https://moluch.ru/conf/phil/archive/138/8497. Accessed December 28, 2018.Google Scholar
  28. 28.
    Kolganov, D.S. and Danilov, E.A., Overview of analytical, statistical and neural machine translation technology, Int. Stud. Sci. Bull., 2018, no. 3-2. http://eduherald.ru/ru/article/view?id=18262. Accessed December 28, 2018.Google Scholar
  29. 29.
    Antopolskii, A.B., On the feasibility of the Russian National Webometric Index, Sci. Tech. Inf. Process., 2014, vol. 41, no. 1, pp. 33–37.CrossRefGoogle Scholar
  30. 30.
    Bulycheva, O.S. and Syuntyurenko, O.V., Conceptual provisions and prerequisites for creating a webometric system of digital space of libraries, Sb. Prez. Bibl., Ser. Elektron. Bibl., 2018, vol. 8, pp. 19–31.Google Scholar
  31. 31.
    Syuntyurenko, O.V., Determinants of the ineffective use of information resources in scientific and technological activities, Sci. Tech. Inf. Process., 2017, vol. 44, no. 3, pp. 159–169.CrossRefGoogle Scholar
  32. 32.
    King, W.D. and Bryant, C.E., The Evaluation of Information Services and Products, Washington: Information Resources Press, 1971.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.All-Russian Institute for Scientific and Technical Information, Russian Academy of SciencesMoscowRussia

Personalised recommendations