Advertisement

Moscow University Soil Science Bulletin

, Volume 73, Issue 4, pp 154–159 | Cite as

Potassium Fixation Capacity of Chernozems after a Single Application of Potassium Fertilizers in Varying Doses

  • T. A. SokolovaEmail author
  • D. N. Osipova
  • A. V. Kiryushin
  • S. E. Ivanova
Genesis and Geography of Soils

Abstract

Potassium fixation capacity has been estimated in chernozem samples taken from the variants of a field experiment with a single application of potassium fertilizers (0, 70, 140 and 280 kg/ha) after a six-year break in fertilizer use. The potassium fixation capacity of chernozems inferred from the change of exchangeable potassium content after the incubation of the samples with a fixed dose of a potassium fertilizer (50 mg/100 g) ranged from 45 to 47 mg/100 g, or 91–95% of the potassium introduced in the different experimental variants. The actual potassium fixation capacity may be considerably higher than the values measured. Potassium fixation capacity inferred from the change of non-exchangeable potassium content after incubation of the samples with a fixed dose of a potassium fertilizer ranged from 32 to 38 mg/100 g, or 64–75% of the potassium introduced, in the experiment variants. Elevated mobility of fixed potassium in the case of a stronger treatment (2 M HCl, the Pchelkin procedure) and the associated decrease in the difference between the mobile potassium levels before and after incubation with a specific dose of the element may be used to explain this discrepancy. No reliable differences with regard to the average values of potassium fixation capacity were detected between the experiment variants, but the maximal values were observed in the control variant and decreased gradually as the fertilizer doses increased.

Keywords

potassium status of chernozems exchangeable potassium non-exchangeable potassium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borzenko, S.G., Interaction between sod-podzolic and chernozem soils with potassium fertilizers of different chemical composition (under model experiment conditions), Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow, 2006.Google Scholar
  2. 2.
    Ivanova, S.E., Romanenkov, V.A., and Nikitina, L.V., First results of scientific project on improving potassium fertilizers application in Russia, Pitan. Rast., 2014, no. 1.Google Scholar
  3. 3.
    Karpinets, T.V., The way to determine stable stationary states of potassium content in soils, Pochvovedenie, 1994, no. 10.Google Scholar
  4. 4.
    Klassifikatsiya pochv Rossii (Classification of Russian Soils), Smolensk, 2004.Google Scholar
  5. 5.
    Kozlova, O.N., Potassium content change in chernozem and sod-podzolic soils of different granulometric and mineralogical composition under potassium fertilizers application, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow, 2003.Google Scholar
  6. 6.
    Metodicheskie podkhody k opredeleniyu parametrov kaliinogo rezhima pakhotnykh pochv pri dlitel’nykh opytakh (Methodological approaches for determining potassium parameters in arable lands under long-term tests), Moscow, 2011.Google Scholar
  7. 7.
    Mineev, V.G., Agrokhimiya (Agrochemistry), Moscow, 2004.Google Scholar
  8. 8.
    Osipova, D.N., Ivanova, S.E., and Sokolova, T.A., Potassium status and clay mineralogy in ordinary chernozems treated with different rates of potassium fertilizers, Moscow Univ. Soil Sci. Bull., 2016, vol. 71, no. 2, pp. 51–57.CrossRefGoogle Scholar
  9. 9.
    Petrofanov, V.L., Potassium mobility in granulometric fractions of sod-podzol and chernozem soils, Extended Abstract of Cand. Sci. (Agric.) Dissertation, Moscow, 2012.Google Scholar
  10. 10.
    Pchelkin, V.U., Pochvennyi kalii i kaliinye udobreniya (Soil Potassium and Potassium Fertilizers), Moscow, 1966.Google Scholar
  11. 11.
    Seredina, V.P., Kalii v avtomorfnykh pochvakh na lessovidnykh suglinkakh (Potassium in Automorphic Soils at Loess-Like Loam), Tomsk, 1984.Google Scholar
  12. 12.
    Sychev, V.G., Possibilities of gradation development of “accessible” potassium content, Agrokhim. Vestn., 2000, no. 5.Google Scholar
  13. 13.
    Targul’yan, V.O. and Gerasimova, M.I., Mirovaya korrelyativnaya baza pochvennykh resursov (World’s Correlative Base of Soil Resources), Moscow, 2007.Google Scholar
  14. 14.
    Chekmarev, P.A., Lukin, S.V., Siskevich, Yu.I., et al., Potassium in Central Black Earth Region agriculture, Pitan. Rast., 2011, no. 3.Google Scholar
  15. 15.
    Shaimukhametov, M.Sh. and Petrofanov, V.L., Effect of long-term fertilization on the K-fixing capacity of soils, Eurasian Soil Sci., 2008, vol. 41, no. 4, pp. 441–452.CrossRefGoogle Scholar
  16. 16.
    Yakimenko, V.N., Kalii v agrotsenozakh Zapadnoi Sibiri (Potassium in Western Siberia Agrocenosises), Novosibirsk, 2003.Google Scholar
  17. 17.
    Yakimenko, V.N., Potassium and ammonium forms transformation in agrocenosis soil, Vestn. Tomsk Gos. Univ. Biol., 2011, vol. 1, no. 13.Google Scholar
  18. 18.
    Barré, P., Berger, G., and Velde, B., How element translocation by plants may stabilize illitic clays in the surface of temperate soils, Geoderma, 2009, vol. 151, nos. 1–2, pp. 22–30.CrossRefGoogle Scholar
  19. 19.
    Soil Mineralogy with Environmental Application, Dixon, J.B. and Schulze, D.G., Eds., Madison, 2002.Google Scholar
  20. 20.
    Murashkina, M.A., Southard, R.J., and Pettygrove, G.S., Potassium fixation in san joaquin valley soils derived from granitic and nongranitic alluvium, Soil Sci. Soc. Am. J., 2007, vol. 71, no. 1.Google Scholar
  21. 21.
    Mutscher, H., Measurement and assessment of soil potassium, Int. Potash Inst., 1995, no. 4.Google Scholar
  22. 22.
    Olk, D.C. and Cassman, K.G., Reduction of potassium fixation by two humic acid fractions in vermiculitic soils, Soil Sci. Soc. Am. J., 1995, vol. 59, no. 5.CrossRefGoogle Scholar
  23. 23.
    Simonsson, M., Andersson, S., Andrist-Rangel, Y., et al., Potassium release and fixation as a function of fertilizer application rate and soil parent material, Geoderma, 2007, vol. 140, pp. 188–190.CrossRefGoogle Scholar
  24. 24.
    Springop, G., Blocking the release of potassium from clay interlayers by small concentrations of and CS+, Eur. J. Soil Sci., 1999, vol. 50, no. 4.Google Scholar
  25. 25.
    Tributh, H., Boguslavski, E., Lieres, A., et al., Effect of potassium removal by crops on transformation of illitic clay minerals, Soil Sci., 1987, vol. 143, no. 6.Google Scholar
  26. 26.
    Turpault, M.-P., Righi, D., and Utérano, C., Clay minerals: precise markers of the spatial and temporal variability of the biogeochemical soil environment, Geoderma, 2008, vol. 147, no. 3–4, pp. 108–115.Google Scholar
  27. 27.
    Zhang, H.M., Xu, M.G., and Zhang, W.J., Factors affecting potassium fixation in seven soils under 15-year longterm fertilization, Chin. Sci. Bull., 2009, vol. 54, no. 10, pp. 1773–1780.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • T. A. Sokolova
    • 1
    Email author
  • D. N. Osipova
    • 2
  • A. V. Kiryushin
    • 1
  • S. E. Ivanova
    • 3
  1. 1.Department of Soil ScienceMoscow State UniversityMoscowRussia
  2. 2.Environmental Monitoring BureauZAO MKMMoscowRussia
  3. 3.International Institute of Plant NutritionMoscowRussia

Personalised recommendations