Advertisement

Moscow University Soil Science Bulletin

, Volume 73, Issue 2, pp 76–80 | Cite as

Protective Activity of Humic Substances in Wheat Seedlings in Water Deficit Conditions

  • N. A. Kulikova
  • O. I. Filippova
  • I. V. Perminova
Ecological Safety
  • 3 Downloads

Abstract

We conducted a comparative evaluation of the protective effect of humic substances (HSs) derived from coal and peat in seedlings of soft wheat Triticum aestivum L. in water deficit conditions caused by a PEG-6000 hyperosmotic solution. The protective effect of HSs was found to increase with an increase in the content of phenolic fragments. This finding may indicate that the antioxidant activity of HS was the main protective activity mechanism of HS in water deficit conditions.

Keywords

humic substances protective activity water deficit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gorovaya, A.I., Orlov, D.S., and Shcherbenko, O.V., Guminovye veshchestva. Stroenie, funktsii, mekhanizm deistviya, protektornye svoistva, ekologicheskaya rol’ (Humic Substances: Structure, Functions, Action Mechanism, Protective Properties, and Ecological Role), Kiev, 1995.Google Scholar
  2. 2.
    Degradatsiya i okhrana pochv (Soils Degradation and Security), Dobrovol’skii, G.V., Ed., Moscow, 2002.Google Scholar
  3. 3.
    Kovalevskii, D.V., Permin, A.B., Perminova, I.V., and Petrosyan, V.S., The way to choose recording conditions of 13C nuclear magnetic resonance spectra of humic acids, Vestn. Mosk. Univ., Ser. 2. Khim., 2000, no. 41.Google Scholar
  4. 4.
    Koshkin, E.I., Fiziologiya ustoichivosti sel’skokhozyaistvennykh kul’tur: Uchebnik (Physiology of Agriculture Plants Resistance: Student’s Book), Moscow, 2010.Google Scholar
  5. 5.
    Kuznetsov, V.V. and Dmitrieva, G.A., Fiziologiya rastenii: Uchebnik (Plant Physiology: Student’s Book), Moscow, 2006.Google Scholar
  6. 6.
    Orlov, D.S., Guminovye veshchestva v biosfere (Humic Substances in Biosphere), Moscow, 1993.Google Scholar
  7. 7.
    Polesskaya, O.G., Rastitel’naya kletka i aktivnye formy kisloroda (Plant’ Cell and Active Species of Oxygen), Moscow, 2007.Google Scholar
  8. 8.
    Tekhnicheskii analiz torfa (Technical Analysis of Peat), Moscow, 1992.Google Scholar
  9. 9.
    Fiziologiya rastenii: Uchebnik dlya studentov vuzov (Plant Physiology: Student’s Book for Universities), Moscow, 2005.Google Scholar
  10. 10.
    Aeschbacher, M., Graf, C., Schwarzenbach, R.P., and Sander, M., Antioxidant properties of humic substances, Environ. Sci. Technol., 2012, vol. 46, no. 9, pp. 4916–4925.CrossRefGoogle Scholar
  11. 11.
    Dunstone, R.L., Richards, R.A., and Rawson, H.M., Variable responses of stomatal conductance, growth, and yield to fulvic acid applications to wheat, Aust. J. Agric. Res., 1988, vol. 39, pp. 547–553.CrossRefGoogle Scholar
  12. 12.
    Fong, S.S., Characterization of the coal derived humic acids from Mukah, Sarawak as soil conditioner, J. Braz. Chem. Soc., 2006, vol. 17, no. 3.Google Scholar
  13. 13.
    Fujita, M., Fujita, Y., Noutoshi, Y., et al., Cross talk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signalling networks, Curr. Opin. Plant Biol., 2006, vol. 9, no. 4, pp. 436–442.CrossRefGoogle Scholar
  14. 14.
    Klein, O.I., Kulikova, N.A., Filimonov, I.S., et al., Long-term kinetics study and quantitative characterization of the antioxidant capacities of humic and humic-like substances, J. Soils Sedim., 2016. doi 10.1007/s1136850165153857Google Scholar
  15. 15.
    Klein, O.I., Kulikova, N.A., Konstantinov, A.I., et al., Transformation of humic substances of highly oxidized brown coal by basidiomycetes Trametes hirsuta and Trametes maxima, Appl. Biochem. Microbiol., 2013, vol. 49, no. 3.Google Scholar
  16. 16.
    Krol, A., Amarowicz, R., and Weidner, S., Changes in the composition of phenolic compounds and antioxidant properties of grapevine roots and leaves (Vitis vinifera L.) under continuous of long-term drought stress, Acta Physiol. Plant., 2014, no. 36.Google Scholar
  17. 17.
    Kudryavtsev, A.V., Perminova, I.V., and Petrosyan, V.S., Size-exclusion chromatographic descriptors of humic substances, Anal. Chim. Acta, 2000, vol. 407, nos. 1–2.Google Scholar
  18. 18.
    Michel, B.E. and Kaufmann, M.R., The osmotic potential of polyethylene glycol 6000, Plant Physiol., 1973, vol. 51, pp. 914–916.CrossRefGoogle Scholar
  19. 19.
    Perminova, I.V., Frimmel, F.H., Kovalevskii, D.V., et al., Development of a predictive model for calculation of molecular weight of humic substances, Water Res., 1998, no. 32, pp. 872–881.CrossRefGoogle Scholar
  20. 20.
    Zhang, X., Ervin, E.H., and Schmidt, R.E., Plant growth regulators can enhance the recovery of Kentucky bluegrass sod from heat injury, Crop Sci., 2003, vol. 43, no. 3, pp. 952–956.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • N. A. Kulikova
    • 1
    • 2
  • O. I. Filippova
    • 1
  • I. V. Perminova
    • 3
  1. 1.Department of Soil ScienceMoscow State UniversityMoscowRussia
  2. 2.Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research CenterRussian Academy of SciencesMoscowRussia
  3. 3.Department of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations