Moscow University Soil Science Bulletin

, Volume 73, Issue 2, pp 81–88 | Cite as

Spatial Variability of Carbon Dioxide Emission by Soils in the Main Types of Forest Ecosystems at the Zvenigorod Biological Station of Moscow State University

  • G. N. KoptsikEmail author
  • Yu. V. Kupriianova
  • M. S. Kadulin
Soil Biology


Carbon dioxide (CO2) emission from the soil surface in forest biogeocenoses of the Zvenigorod Biological Station of Moscow State University in summer varies on average from 120 to 350 mg C–CO2/(m2 h) and depends on the hydrothermal conditions (soil moisture and temperature) and the type of phytocenosis. The intensity of CO2 emission in the biogeocenosis does not depend on its parcel structure and varies with respect to plant microgroups: it is maximum in oxalis pine–spruce and maple–lime forests and bracken spruce–birch forests and minimum in areas of forest fall without vegetation. The upper (from 0 to 20 cm thick) soil layer provides up to 50% of the total soil CO2 emission. The role of microbial respiration in the total CO2 emission from soils is determined by weather conditions and varies from 9–33% in a dry summer to 55–75% in a summer with favorable temperature and moisture.


carbon fluxes soil respiration root respiration microbial biomass temperature soil moisture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dobrovol’skii, G.V. and Nikitin, E.D., Ekologiya pochv. Uchenie ob ekologicheskikh funktsiyakh pochv (Soils Ecology. Theory of Soils Ecological Functions), Moscow, 2012.Google Scholar
  2. 2.
    Yevdokimov, I.V., Larionova, A.A., Schmitt, M., et al., Experimental assessment of the contribution of plant root respiration to the emission of carbon dioxide from the soil, Eurasian Soil Sci., 2010, vol. 43, no. 12, p. 1373.CrossRefGoogle Scholar
  3. 3.
    Zavarzin, G.A. and Kudeyarov, V.N., Soil as the key source of carbonic acid and reservoir of organic carbon on the territory of Russia, Herald Russ. Acad. Sci., 2006, vol. 76, no. 1, pp. 12–26.CrossRefGoogle Scholar
  4. 4.
    Karelin, D.V., Zamolodchikov, D.G., Kaganov, V.V., Pochikalov, A.V., and Gitarskii, M.L., Microbial and root components of respiration of sod-podzolic soils in boreal forest, Contemp. Probl. Ecol., 2017, vol. 10, no. 7, pp. 717–727.CrossRefGoogle Scholar
  5. 5.
    Karelin, D.V., Pochikalov, A.V., and Zamolodchikov, D.G., The increasing effect of CO2 emission at Valday forests decay gaps, Izv. Akad. Nauk, Ser. Geogr., 2017, no. 2.Google Scholar
  6. 6.
    Karelin, D.V., Pochikalov, A.V., Zamolodchikov, D.G., and Gitarskii, M.L., Factors of spatiotemporal variability of CO2 fluxes from soils of southern taiga spruce forests of Valdai, Contemp. Probl. Ecol., 2014, vol. 7, no. 7, pp. 743–751.CrossRefGoogle Scholar
  7. 7.
    Koptsik, G.N., Vladychenskii, A.S., and Gavrilov, V.M., Organization of soil-ecological monitoring in forest ecosystems Zvenigorod Biological Station of Moscow State University, Tr. Zvenigorodsk. Biol. Stn., Mosk. Gos. Univ., 2011, vol. 5.Google Scholar
  8. 8.
    Koptsik, G.N., Kadulin, M.S., and Zakharova, A.I., The effect of technogenic contamination on carbon dioxide emission by soils in the Kola Subarctic, Biol. Bull. Rev., 2015, vol. 5, no. 5, pp. 480–492.CrossRefGoogle Scholar
  9. 9.
    Kurganova, I.N., Carbon dioxide emission and balance in Russian ecosystems, Extended Abstract of Doctoral (Biol.) Dissertation, Moscow, 2010.Google Scholar
  10. 10.
    Larionova, A.A., Sapronov, D.V., Lopez de Gerenyu, V.O., et al., Contribution of plant root respiration to the CO2 emission from soil, Eurasian Soil Sci., 2006, vol. 39, no. 10, p. 1127.CrossRefGoogle Scholar
  11. 11.
    Naumov, A.V., Dykhanie pochvy: sostavlyayushchie, ekologicheskie funktsii, geograficheskie zakonomernosti (Soil Respiration: Components, Ecological Functions, and Geographic Regularities), Novosibirsk, 2009.Google Scholar
  12. 12.
    Puly i potoki ugleroda v nazemnykh ekosistemakh Rossii (Carbon Pools and Flows in Russian On-Ground Ecosystems), Zavarzin, G.A., Ed., Moscow, 2007.Google Scholar
  13. 13.
    Smagin, A.B., Gazovaya faza pochv (Soils Gas Phase), Moscow, 2005.Google Scholar
  14. 14.
    Sultanbaeva, R.R., Koptsik, G.N., Smirnova, I.E., and Koptsik, S.V., Input and migration of dissolved organic carbon in soils of forest ecosystems in the subzone of deciduous-coniferous forests, Moscow Univ. Soil Sci. Bull., 2015, vol. 70, no. 4, p. 168.CrossRefGoogle Scholar
  15. 15.
    Bond-Lamberty, B. and Thomson, A., Temperatureassociated increases in the global soil respiration record, Nature, 2010, vol. 464, pp. 579–582.CrossRefGoogle Scholar
  16. 16.
    Hicke, J.A., Allen, C.D., Desai, A.R., et al., Effects of biotic disturbances on forest carbon cycling in the United States and Canada, Global Change Biol., 2012, vol. 18, pp. 7–34.CrossRefGoogle Scholar
  17. 17.
    Hunt, J.E., Kelliher, F.M., McSeveny, T.M., et al., Long-term carbon exchange in a sparse, seasonally dry tussock grassland, Global Change Biol., 2004, vol. 10, pp. 1785–1800.CrossRefGoogle Scholar
  18. 18.
    Jassal, R., Black, A., Novak, M., et al., Relationship between soil CO2 concentrations and forest floor CO2 effluxes, Agric. For. Meteorol., 2005, vol. 130, nos. 3–4.Google Scholar
  19. 19.
    Schlesinger, W.H. and Andrews, J.A., Soil respiration and the global carbon cycle, Biogeochemistry, 2000, vol. 48, no. 1.Google Scholar
  20. 20.
    Vance, E.D., Brookes, P.C., and Jenkinson, D.S., An extraction method for measuring soil microbial biomass C, Soil Biol. Biochem., 1987, vol. 19, no. 6, pp. 703–707.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • G. N. Koptsik
    • 1
    Email author
  • Yu. V. Kupriianova
    • 1
  • M. S. Kadulin
    • 1
  1. 1.Faculty of Soil ScienceMoscow State UniversityMoscowRussia

Personalised recommendations