Moscow University Soil Science Bulletin

, Volume 73, Issue 1, pp 39–44 | Cite as

Procedural Approaches to Field Determination of Root and Microbial Respiration Contribution to CO2 Emission by Permafrost-Affected Soils

  • O. Yu. Goncharova
  • G. V. Matyshak
  • A. A. Bobrik
  • M. M. Udovenko
  • A. R. Sefilian
Soil Biology
  • 4 Downloads

Abstract

In the discontinuous cryolithozone in the north of Western Siberia in forest and tundra biogeocoenoses, two field methods for individual determination of root and microbial soil respiration were tested: plant shading and root exclusion (comparison of the plots with vegetation and without it). The proportion of of root respiration in the total soil respiration in the forest biogeocoenosis was 7–50%; in the tundra, 10–50%. The plant shading method has been physiologically substantiated, is the least time-consuming, and the least damaging to soil function (moisture and temperature do not change). The proposed modification of the method (root exclusion on natural objects) demonstrated a satisfactory result, but it is not universal due to the specifics of objects.

Keywords

autotrophic and heterotrophic respiration Western Siberia root respiration cryolithozone microbiological activity peatlands CO2 emission 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Golik, K.N., Temnovoe dykhanie rastenii (Plants Dark Respiration), Kiev, 1990.Google Scholar
  2. 2.
    Goncharova, O.Yu., Bobrik, A.A., Matyshak, G.V., and Makarov, M.I., The role of soil cover in maintaining the structural and functional integrity of northern taiga ecosystems in Western Siberia, Contemp. Probl. Ecol., 2016, vol. 9, no. 1, pp. 1–8.CrossRefGoogle Scholar
  3. 3.
    Goncharova, O.Yu., Matyshak, G.V., Bobrik, A.A., et al., Temperature regimes of northern taiga soils in the isolated permafrost zone of Western Siberia, Eurasian Soil Sci., 2015, vol. 48, no. 12, pp. 1329–1340.CrossRefGoogle Scholar
  4. 4.
    Goncharova, O.Yu., Matyshak, G.V., Bobrik, A.A., and Moskalenko, N.G., Carbon dioxide generation by Western Siberia northern taiga soils (Nadym department), Kriosfera Zemli, 2014, vol. 18, no. 2Google Scholar
  5. 5.
    Yevdokimov, I.V., Larionova, A.A., Schmitt, M., et al., Determination of root and microbial contributions to the CO2 emission from soil by the substrate-induced respiration method, Eurasian Soil Sci., 2010, vol. 43, no. 3, pp. 321–327.CrossRefGoogle Scholar
  6. 6.
    Yevdokimov, I.V., Larionova, A.A., Schmitt, M., et al., Experimental assessment of the contribution of plant root respiration to the emission of carbon dioxide from the soil, Eurasian Soil Sci., 2010, vol. 65, no. 12, pp. 1373–1381.CrossRefGoogle Scholar
  7. 7.
    Karelin, D.V. and Zamolodchikov, D.G., Uglerodnyi obmen v kriogennykh sistemakh (Carbon Exchange in Cryogenic Systems), Moscow, 2008.Google Scholar
  8. 8.
    Kuzyakov, Ya.V. and Larionova, A.A., Contribution of rhizomicrobial and root respiration to the CO2 emission from soil (a review), Eurasian Soil Sci., 2006, vol. 39, no. 7, pp. 753–764.CrossRefGoogle Scholar
  9. 9.
    Ogneva, O.A., Matyshak, G.V., Goncharova, O.Yu., et al., Soils from peat spots of hummocky peat-bogs at the north of Western Siberia, Kriosfera Zemli, 2016, vol. 20, no. 2Google Scholar
  10. 10.
    Panikov, N.S., Paleeva, M.V., Dedysh, S.N., and Dorofeev, A.G., Kinetic methods for determining biomass and activity of different groups of soil microorganisms, Pochvovedenie, 1991, no. 8.Google Scholar
  11. 11.
    Trefilova, O.V., Intensity of heterotrophic respiration of middle taiga cone forests: comparison analysis of estimation methods, Khvoinye Boreal’n. Zony, 2007, no. 4–5.Google Scholar
  12. 12.
    Fedorov-Davydov, D.G., Respiration activity in tundra biocenoses and soils of the Kolyma lowland, Eur. Soil Sci., 1998, vol. 31, no. 3, pp. 263–273.Google Scholar
  13. 13.
    Bao, F., Zhou, G.S., Wang, F.Y., and Sui, X.H., Partitioning soil respiration in a temperate desert steppe in inner Mongolia using exponential regression method, Soil Biol. Biochem., 2010, vol. 42, no. 12Google Scholar
  14. 14.
    Billings, W.D., Peterson, K.M., Shaver, G.R., and Trent, A.W., Root growth, respiration and carbon dioxide evolution in an arctic soil, Arct. Alpi. Res., 1977, vol. 9, no. 2Google Scholar
  15. 15.
    Cheng, W. and Dijkstra, F., Theoretical proof and empirical confirmation of a continuous labeling method using naturally 13C-depleted carbon dioxide, J. Integr. Plant Biol., 2007, vol. 49, no. 3Google Scholar
  16. 16.
    Craine, J.M., Wedin, D.A., and Chapin, F.S., Predominance of ecophysiological controls on soil CO2 flux in a Minnesota grassland, Plant Soil, 1999, vol. 207, no. 1Google Scholar
  17. 17.
    Fang, C., Smith, P., Moncrieff, J.B., and Smith, J.U., Similar response of labile and resistant soil organic matter pools to changes in temperature, Nature, 2005, vol. 433, pp. 57–59.CrossRefGoogle Scholar
  18. 18.
    Ferrea, C., Zenone, T., Comolli, R., and Seufert, G., Estimating heterotrophic and autotrophic soil respiration in a semi-natural forest of Lombardy, Italy, Pedobiologia, 2012, vol. 55, no. 6Google Scholar
  19. 19.
    Fisher, F.M. and Gosz, J.R., Effects of trenching on soil processes and properties in a new Mexico mixed conifer forest, Biol. Fertil. Soils, 1986, vol. 2, no. 1Google Scholar
  20. 20.
    Hanson, P.J., Edwards, N.T., Garten, C.T., and Ansrews, J.A., Separating root and soil microbial contributions to soil respiration: a review of methods and observations, Biogeochemistry, 2000, vol. 48, no. 1Google Scholar
  21. 21.
    Högberg, P., Bhupinderpal, S., Löfvenius, M.O., and Nordgren, A., Partitioning of soil respiration into its autotrophic and heterotrophic components by means of tree-girdling in old boreal spruce forest, Forest Ecol. Manag., 2009, vol. 257, no. 8Google Scholar
  22. 22.
    Koerber, G.R., Hill, P.W., Edwards-Jones, G., and Jones, D.L., Estimating the component of soil respiration not dependent on living plant roots: comparison of the indirect y-intercept regression approach and direct bare plot approach, Soil Biol. Biochem., 2010, vol. 42, no. 10Google Scholar
  23. 23.
    Kucera, C.L. and Kirkham, D.R., Soil respiration studies in tallgrass prairie in Missouri, Ecology, 1971, vol. 52, no. 5Google Scholar
  24. 24.
    Kuzyakov, Y., Sources of CO2 efflux from soil and review of partitioning methods, Soil Biol. Biochem., 2006, vol. 38, no. 3Google Scholar
  25. 25.
    Plant Respiration. From Cell to Ecosystem, Lambers, H. and Ribas-Carbo, M., Eds., Dordrecht, 2005.Google Scholar
  26. 26.
    Subke, J.A., Inglima, I., and Cotrufo, M.F., Trends and methodological impacts in soil CO2 efflux partitioning: a metaanalytical review, Global Change Biol., 2006, vol. 12, no. 6Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • O. Yu. Goncharova
    • 1
  • G. V. Matyshak
    • 1
  • A. A. Bobrik
    • 1
  • M. M. Udovenko
    • 1
  • A. R. Sefilian
    • 1
  1. 1.Department of Soil ScienceMoscow State UniversityMoscowRussia

Personalised recommendations