Advertisement

Automatic Control and Computer Sciences

, Volume 53, Issue 6, pp 511–521 | Cite as

Robust Nonsingular Fast Terminal Sliding Mode Control in Trajectory Tracking for a Rigid Robotic Arm

  • A. JouilaEmail author
  • N. Essounbouli
  • K. Nouri
  • A. Hamzaoui
Article

Abstract

In this paper, a novel concept of robust Nonsingular Fast Terminal Sliding Mode controller (NFTSMC) is adopted for the trajectory tracking problem of a non-linear system. The developed controller is based on NFTSM controller and \({{{\text{H}}}_{\infty }}\) approach. The use of the NFTSM controller offers a fast convergence rate, avoids singularities, but still suffers from chattering. In order to overcome this limitation, a new term in the control law is inspired by the technique of \({{{\text{H}}}_{\infty }}{\text{;}}\) it interferes by managing uncertainties and external disturbances without knowing their upper bound. Stability analysis of the closed-loop system is accomplished using the Lyapunov criterion. Several simulation results are given to show the effectiveness of the proposed approach.

Keywords:

nonsingular fast terminal sliding mode control robot arm terminal sliding mode control Lyapunov stability nonlinear system 

Notes

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest regarding the publication of this paper.

ADDITIONAL INFORMATION

DOI: https://orcid.org/0000-0002-9078-6574.

REFERENCES

  1. 1.
    Zhao, D., Li, S., and Zhu, Q., Output feedback terminal sliding mode control for a class of second-order nonlinear systems, Asian J. Control, 2013, vol. 15, no. 1, pp. 237–247.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Van, M., Sam Ge, S., and Ren, H., Finite time fault tolerant control for robot manipulators using time delay estimation and continuous nonsingular fast terminal sliding mode control, IEEE Trans. Cybern., 2016, vol. 47, pp. 1681–1693.CrossRefGoogle Scholar
  3. 3.
    Yang, Y. and Yang, J., Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems, Int. J. Robust Nonlinear Control, 2011, vol. 21, pp. 1865–1879.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Slotine, J.J.E. and Li, W., Applied Nonlinear Control, Prentice Hall, 1991.zbMATHGoogle Scholar
  5. 5.
    Furuta, A. and Uchino, K., Dynamic observation of crack propagation in piezoelectric multilayer actuators, J. Am. Ceram. Soc., 1993, vol. 76, pp. 1615–1617.CrossRefGoogle Scholar
  6. 6.
    Fuh, C.C., Variable-thickness boundary layers for sliding mode control, J. Mar. Sci. Technol., 2008, vol. 16, no. 4, pp. 288–294.Google Scholar
  7. 7.
    Guo, Y. and Woo, P.-Y., An adaptive fuzzy sliding mode controller for robotic manipulators, IEEE Trans. Syst. Man Cybern., Part A: Syst. Hum., 2003, vol. 33, pp. 149–159.Google Scholar
  8. 8.
    Abdelaziz, H., Essounbouli, N., Benmahammad, K., and Zaytoun, J., State observer based robust adaptive fuzzy controller for nonlinear uncertain and perturbed systems, IEEE Trans. Syst. Man Cybern., Part B (Cybern.), 2004, vol. 34, pp. 942–950.CrossRefGoogle Scholar
  9. 9.
    Ho, H.F., Wong, Y.-K., and Rad, A.-B., Adaptive fuzzy sliding mode control with chattering elimination for nonlinear SISO systems, Simul. Model. Pract. Theory, 2009, vol. 17, pp. 1199–1210.CrossRefGoogle Scholar
  10. 10.
    Al-Khazraji, A., Essounbouli, N., Hamzaoui, A., Nollet, F., and Zaytoon, J., Type-2 fuzzy sliding mode control without reaching phase for nonlinear system, Eng. Appl. Artif. Intell., 2011, vol. 24, pp. 23–38.CrossRefGoogle Scholar
  11. 11.
    Wang, H., Man, Z., Kong, H., Zhao, Y., Yu, M., Cao, Z., Zheng, J., and Do, M.-H., Design, and implementation of adaptive terminal sliding mode control on a steer-by-wire equipped road vehicle, IEEE Trans. Ind. Electron., 2016, vol. 63, pp. 5774–5785.CrossRefGoogle Scholar
  12. 12.
    Lee, S.-H., Park, J.-B., and Choi, Y.-H., Terminal sliding mode control of nonlinear chaotic systems using self-recurrent wavelet neural network, International Conference on Control, Automation and Systems, Seoul, 2007, pp. 17–20.Google Scholar
  13. 13.
    Mu, C. and He, H., Dynamic behavior of terminal sliding mode control, IEEE Trans. Ind. Electron., 2017, vol. 65, pp. 3480–3490.CrossRefGoogle Scholar
  14. 14.
    Zheng, J., Wang, H., and Man, Z., Jin, J., and Fu, M., Robust motion control of a linear motor positioner using fast nonsingular terminal sliding mode, IEEE/ASME Trans. Mechatronics, 2015, vol. 20, pp. 1743–1752.CrossRefGoogle Scholar
  15. 15.
    Panwar, V., Wavelet neural network-based H trajectory tracking for robot manipulators using fast terminal sliding mode control, Robotica, 2016, vol. 35, no. 7, pp. 1–16.Google Scholar
  16. 16.
    Jouila, A. and Nouri, K., Wavelet neural network based-identification and control for a class of non-linear systems: Application to two-mass motor drive system, International Conference on Advanced Systems and Electric Technologies (IC_ASET), Tunisia, 2018, pp. 180–186.Google Scholar
  17. 17.
    Jouila, A. and Nouri, K., Applications to function approximation and system control based on wavelet networks, 18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Tunisia, 2017, pp. 426–431.Google Scholar
  18. 18.
    Madani, T., Daachi, B., and Djouani, K., Modular-controller-design-based fast terminal sliding mode for articulated exoskeleton systems, IEEE Trans. Control Syst. Technol., 2017, vol. 25, pp. 1133–1140.CrossRefGoogle Scholar
  19. 19.
    Dinh, X. and Ahn, K.-K., Radial basis function neural network based adaptive fast nonsingular terminal sliding mode controller for piezo positioning stage, Int. J. Control Autom. Syst., 2017, vol. 15, pp. 2892–2905.CrossRefGoogle Scholar
  20. 20.
    Chen, S.Y. and Lin, F.-J., Robust nonsingular terminal sliding-mode control for nonlinear magnetic bearing system, IEEE Trans. Control Syst. Technol., 2011, vol. 19, pp. 636–643.CrossRefGoogle Scholar
  21. 21.
    Boukattaya, M., Mezghani, N., and Damak, T., Adaptive nonsingular fast terminal sliding-mode control for the tracking problem of uncertain dynamical systems, ISA Trans., 2018, vol. 77, pp. 1–19.CrossRefGoogle Scholar
  22. 22.
    Vo, A.-H. and Kang, H.-J., An adaptive neural non-singular fast-terminal sliding-mode control for industrial robotic manipulators, Appl. Sci., 2018, vol. 8, pp. 1–17.CrossRefGoogle Scholar
  23. 23.
    Van, M., Mavrovouniotis, M., and Ge, M-M., An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators, IEEE Trans. Syst. Man Cybern.: Syst., 2018, pp. 1–11.Google Scholar
  24. 24.
    Wang, H., Shi, L., Man, Z., Zheng, J., Li, S., Yu, M., Jiang, C., Kong, H., and Cao, Z., Continuous fast nonsingular terminal sliding mode control of automotive electronic throttle systems using finite-time exact observer, IEEE Trans. Ind. Electron., 2018, vol. 65, pp. 7160–7172.CrossRefGoogle Scholar
  25. 25.
    Al-Ghanimi, A., Zheng, J., and Man, Z., Robust control of piezoelectric actuator using fast nonsingular terminal sliding mode, IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), New Zealand, 2015.  https://doi.org/10.1109/ICIEA.2015.7334121
  26. 26.
    Dinh, X. and Ahn, K.-K., Adaptive-gain fast nonsingular terminal sliding mode for position control of a piezo positioning stage, J. Syst. Control Eng., 2018, vol. 232, pp. 994–1014.Google Scholar
  27. 27.
    Gerasimos, R., Siano, P., and Wira, P., Nonlinear H-infinity feedback control for asynchronous motors of electric trains, Intell. Ind. Syst., 2015, vol. 1, pp. 85–98.CrossRefGoogle Scholar
  28. 28.
    Gerasimos, R. and Siano, P., A new nonlinear h-infinity feedback control approach to the problem of autonomous robot navigation, Intell. Ind. Syst., 2015, vol. 1, pp. 179–186.CrossRefGoogle Scholar
  29. 29.
    Nair, S.-S., Automatic weight selection algorithm for designing H infinity controller for active magnetic bearing, Int. J. Eng. Sci. Technol., 2011, vol. 3, no. 1, pp. 122–138.Google Scholar
  30. 30.
    Mehdi, H. and Boubaker, O., PSO-Lyapunov motion/force control of robot arms with model uncertainties, Robotica, 2014, vol. 34, pp. 634–651.CrossRefGoogle Scholar
  31. 31.
    Kumar, R., Srivastava, S., and Gupta, J.R.P., Modeling and control of one-link robotic manipulator using neural network based PID controller, Intl. Conference on Advances in Computing, Communications and Informatics (ICACCI), 2016.Google Scholar
  32. 32.
    Wang, L.-X., Adaptive Fuzzy Systems and Control: Design and Stability Analysis, PTR Prentice Hall, 1994.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • A. Jouila
    • 1
    Email author
  • N. Essounbouli
    • 2
  • K. Nouri
    • 1
  • A. Hamzaoui
    • 2
  1. 1.Laboratory of Advanced Systems (LSA), Polytechnic School of Tunisia, National Engineering School of Tunis (ENIT)TunisTunisia
  2. 2.CReSTIC, IUT de TroyesTroyes CedexFrance

Personalised recommendations