Advertisement

Automatic Control and Computer Sciences

, Volume 53, Issue 6, pp 481–491 | Cite as

Synthesis of Built-in Self-Test Control Circuits Based on the Method of Boolean Complement to Constant-Weight 1-out-of-n Codes

  • D. V. EfanovEmail author
  • V. V. SapozhnikovEmail author
  • Vl. V. Sapozhnikov
  • D. V. Pivovarov
Article

Abstract

We consider the problem of designing a built-in control circuit with full self-testability of control equipment based on the method of Boolean complement to constant-weight 1-out-of-n codes. A method is proposed for determining complementary functions considering the formation of the necessary set of test combinations for a complete check of each element of modulo-2 addition in the structure of the Boolean complement block. Due to the introduction of uncertainties in the selection of values, it is possible to minimize the complexity of control functions, which makes it possible to simplify the control logic block. An algorithm for the synthesis of a built-in self-test control circuit based on the method of Boolean complement to a preselected constant-weight 1-out-of-n code is given.

Keywords:

built-in control circuit self-checking constant-weight code Boolean complement method testing of elements 

Notes

CONFLICTS OF INTEREST

The authors declare that they do not have any conflicts of interest.

REFERENCES

  1. 1.
    Goessel, M. and Graf, S., Error Detection Circuits, London: McGraw-Hill, 1994.Google Scholar
  2. 2.
    Pradhan, D.K., Fault-Tolerant Computer System Design, New York: Prentice Hall, 1996.Google Scholar
  3. 3.
    Wang, L.-T., Stroud, C.E., and Touba, N.A., System-On-Chip Test Architectures: Nanometer Design for Testability, Morgan Kaufmann Publishers, 2008.Google Scholar
  4. 4.
    Ubar, R., Raik, J., and Vierhaus, H.-T., Design and Test Technology for Dependable Systems-On-Chip, New York: IGI Global, 2011.CrossRefGoogle Scholar
  5. 5.
    Kharchenko, V., Kondratenko, Yu., and Kacprzyk, J., Green IT Engineering: Concepts, Models, Complex Systems Architectures, Springer, 2017.  https://doi.org/10.1007/978-3-319-44162-7 CrossRefGoogle Scholar
  6. 6.
    Busaba, F.Y. and Lala, P.K., Self-checking combinational circuit design for single and unidirectional multibit errors, J. Electron Test.: Theory Appl., 1994, no. 1, pp. 19–28.  https://doi.org/10.1007/BF00971960 CrossRefGoogle Scholar
  7. 7.
    Piestrak, S.J., Design of Self-Testing Checkers for Unidirectional Error Detecting Codes, Wroclaw: Oficyna Wydawnicza Politechniki Wroclavskiej, 1995.Google Scholar
  8. 8.
    Nicolaidis, M. and Zorian, Y., On-line testing for VLSI—a compendium of approaches, J. Electron. Test.: Theory Appl., 1998, no. 12, pp. 7–20.  https://doi.org/10.1023/A:1008244815697 CrossRefGoogle Scholar
  9. 9.
    Das, D. and Touba, N.A., Weight-based codes and their application to concurrent error detection of multilevel circuits, Proceedings of the 17th IEEE VLSI Test Symposium, USA, CA, Dana Point, April 25–29,1999, pp. 370–376.Google Scholar
  10. 10.
    Matrosova, A.Yu., Levin, I., and Ostanin, S.A., Self-checking synchronous FSM network design with low overhead, VLSI Des., 2000, vol. 11, no. 1, pp. 47–58.  https://doi.org/10.1155/2000/46578 CrossRefGoogle Scholar
  11. 11.
    Mitra, S. and McCluskey, E.J., Which concurrent error detection scheme to choose?, Proceedings of International Test Conference,2000, Atlantic City, NJ, 2000, pp. 985–994.  https://doi.org/10.1109/TEST.2000.894311
  12. 12.
    Ghosh, S., Basu, S., and Touba, N.A., Synthesis of low power CED circuits based on parity codes, Proceedings of 23rd IEEE VLSI Test Symposium (VTS’05), 2005, pp. 315–320.Google Scholar
  13. 13.
    Freiman, C.V., Optimal error detection codes for completely asymmetric binary channels, Inf. Control, 1962, vol. 5, no. 1, pp. 64–71.  https://doi.org/10.1016/S0019-9958(62)90223-1 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Sogomonyan, E.S. and Gössel, M., Design of self-testing and on-line fault detection combinational circuits with weakly independent outputs, J. Electron. Test.: Theory Appl., 1993, vol. 4, no. 4, pp. 267–281.  https://doi.org/10.1007/BF00971975 CrossRefGoogle Scholar
  15. 15.
    Das, D. and Touba, N.A., Synthesis of circuits with low-cost concurrent error detection based on bose-lin codes, J. Electron. Test.: Theory Appl., 1999, vol. 15, nos. 1–2, pp. 145–155.  https://doi.org/10.1023/A:1008344603814 CrossRefGoogle Scholar
  16. 16.
    Sogomonyan, E.S. and Slabakov, E.V., Samoproveryaemye ustroistva i otkazoustoichivye sistemy (Self-Checking Devices and Fail-Safe Systems), Moscow: Radio i svyaz’, 1989.Google Scholar
  17. 17.
    Reynolds, D.A. and Metze, G., Fault detection capabilities of alternating logic, IEEE Trans. Comput., 1978, vol. C-27, no. 12, pp. 1093–1098.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Saposhnikov, Vl.V., Dmitriev, A., Goessel, M., and Saposhnikov, V.V., Self-dual parity checking—a new method for on line testing, Proceedings of 14th IEEE VLSI Test Symposium, Princeton, NJ, 1996, pp. 162–168.  https://doi.org/10.1109/VTEST.1996.510852
  19. 19.
    Gessel’, M., Dmitriev, A.V., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., A self-testing structure for functional failure detection in combinational circuits, Avtom. Telemekh., 1999, no. 11, pp. 162–174.Google Scholar
  20. 20.
    Dmitriev, A., Saposhnikov, V., Saposhnikov, Vl., Goessel, M., Moshanin, V., and Morosov, A., New self-dual circuits for error detection and testing, VLSI Des., 2000, vol. 11, no. 1, pp. 1–21.  https://doi.org/10.1155/2000/84720 CrossRefGoogle Scholar
  21. 21.
    Gessel’, M., Dmitriev, A.V., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., Fault detection in combinational circuits using self-dual control, Avtom. Telemekh., 2000, no. 7, pp. 140–149.Google Scholar
  22. 22.
    Göessel, M., Ocheretny, V., Sogomonyan, E., and Marienfeld, D., New Methods of Concurrent Checking, Dordrecht: Springer Science+Business Media B.V., 2008.Google Scholar
  23. 23.
    Goessel, M., Saposhnikov, Vl., Saposhnikov, V., and Dmitriev, A., A new method for concurrent checking by use of a 1-out-of-4 code, Proceedings of the 6th IEEE International On-line Testing Workshop, Palma de Mallorca, 2000, pp. 147–152.  https://doi.org/10.1109/OLT.2000.856627
  24. 24.
    Saposhnikov, V.V., Morozov, A., Saposhnikov, Vl.V., and Goessel, M., Concurrent checking by use of complementary circuits for 1-out-of-3 codes, 5th International Workshop IEEE DDECS 2002, Brno, 2002.Google Scholar
  25. 25.
    Sapozhnikov, V.V., Sapozhnikov, Vl.V., Dmitriev, A.V., Morozov, A.V., and Gessel’, M., Organization of the functional control of combinational circuits by the method of logical complement, Elektron. Model., 2002, vol. 24, no. 6, pp. 52–66.Google Scholar
  26. 26.
    Gessel, M., Morozov, A.V., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., Logic complement, a new method of checking the combinational circuits, Autom. Remote Control, 2003, vol. 64, no. 1, pp. 153–161.MathSciNetCrossRefGoogle Scholar
  27. 27.
    Goessel, M., Morozov, A.V., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., Checking combinational circuits by the method of logic complement, Autom. Remote Control, 2005, vol. 66, no. 8, pp. 1336–1346.CrossRefGoogle Scholar
  28. 28.
    Sen, S.K. and Roy, S.S., An optimized concurrent self-checker using constraint-don’t cares and 1-out-of-4 code, National Conference (AECDISC-2008) in Asansol Engineering College, 2008.Google Scholar
  29. 29.
    Sen, S.K., A self-checking circuit for concurrent checking by 1-out-of-4 code with design optimization using constraint don’t cares, National Conference on Emerging Trends and Advances in Electrical Engineering and Renewable Energy (NCEEERE 2010), 2010.Google Scholar
  30. 30.
    Das, D.K., Roy, S.S., Dmitiriev, A., Morozov, A., and Gössel, M., Constraint don’t cares for optimizing designs for concurrent checking by 1-out-of-3 codes, Proceedings of the 10th International Workshops on Boolean Problems, Freiberg, September, 2012, pp. 33–40.Google Scholar
  31. 31.
    Efanov, D., Sapozhnikov, V., and Sapozhnikov, Vl., Methods of organization of totally self-checking concurrent error detection system on the basis of constant-weight “1-out-of-3” code, Proceedings of 14th IEEE East-West Design & Test Symposium (EWDTS`2016), Yerevan, 2016, pp. 117–125.  https://doi.org/10.1109/EWDTS.2016.7807622
  32. 32.
    Sapozhnikov, V.V., Sapozhnikov, Vl.V., and Efanov, D.V., The construction of fully self-checking structures of functional control systems using the constant-weight “1-out-of-3”-code, Elektron. Model., 2016, vol. 38, no. 6, pp. 25–43.CrossRefGoogle Scholar
  33. 33.
    Sapozhnikov, V.V., Sapozhnikov, Vl.V., Efanov, D.V., and Pivovarov, D.V., The logical complement method based on the constant-weight “1-out-of-3”-code for constructing fully self-checking structures of functional control systems, Elektron. Model., 2017, vol. 39, no. 2, pp. 15–34.CrossRefGoogle Scholar
  34. 34.
    Sapozhnikov, V.V., Sapozhnikov, Vl.V., and Efanov, D.V., The method of functional control of combinational logic devices based on code “2-out-of-4” code, Izv. Vyssh. Uchebn. Zaved.,Priborostr., 2016, vol. 59, no. 7, pp. 524–533.  https://doi.org/10.17586/0021-3454-2016-59-7-524-533 CrossRefGoogle Scholar
  35. 35.
    Sapozhnikov, V.V., Sapozhnikov, Vl.V., and Efanov, D.V., The construction of self-checking structures of functional control systems based on the constant-weight “1-out-of-3”-code, Probl. Upr., 2017, no. 1, pp. 57–64.Google Scholar
  36. 36.
    Morozov, A., Saposhnikov, V.V., Saposhnikov, Vl.V., and Goessel, M., New self-checking circuits by use of Berger-codes, Proceedings of 6th IEEE International On-Line Testing Workshop, Palma De Mallorca, 2000, pp. 171–176.  https://doi.org/10.1109/OLT.2000.856626
  37. 37.
    Berger, J.M., A note on error detection codes for asymmetric channels, Inf. Control, 1961, vol. 4, no. 1, pp. 68–73.  https://doi.org/10.1016/S0019-9958(61)80037-5 MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Sapozhnikov, V.V., Sapozhnikov, Vl.V., Efanov, D.V., and Pivovarov, D.V., A method of constructing a functional control system based on logical complement using the constant-weight “1-out-of-5”-code, Radioelektron. Inf., 2017, no. 3, pp. 15–22.Google Scholar
  39. 39.
    Pivovarov, D.V., Construction of functional control systems for multi-output combinational circuits by the method of logical complement using constant-weight codes, Avtom. Transp., 2018, vol. 4, no. 1, pp. 130–148.Google Scholar
  40. 40.
    Carter, W.C., Duke, K.A., and Schneider, P.R., US Patent 747533, 1968.Google Scholar
  41. 41.
    Sapozhnikov, V.V. and Sapozhnikov, Vl.V., Samoproveryaemye diskretnye ustroistva (Self-Checking Discrete Devices), St. Petersburg: Energoatomizdat, 1992.Google Scholar
  42. 42.
    Aksenova, G.P., Necessary and sufficient conditions for constructing fully verifiable convolution schemes modulo 2, Avtom. Telemekh., 1979, no. 9, pp. 126–135.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Russian University of TransportMoscowRussia
  2. 2.Emperor Alexander I Petersburg State University of Railway EngineeringSt. PetersburgRussia

Personalised recommendations