Automatic Control and Computer Sciences

, Volume 53, Issue 5, pp 393–407 | Cite as

Autopilot Design for an Autonomous Sailboat Based on Sliding Mode Control

  • Helmi AbrouguiEmail author
  • Habib DallagiEmail author
  • Samir NejimEmail author


This paper deals with the design of an autopilot based on sliding mode control combined with feedback linearization method for an autonomous sailing vessel. This autopilot is developed using a model with four degrees of freedom, which represents the dynamic of a sailboat. Due to the high nonlinearity of the developed dynamic model, heading and sail opening angle controller were developed to steer the sailboat toward a specific target position. The nonlinear four degrees of freedom dynamic model for the sailing vessel is first described. Then, an autopilot is designed using both sliding mode control and feedback linearization method. Finally, some simulations are carried out to illustrate the behavior of the overall system.


autonomous sailboat autopilot feedback linearization sliding mode control 



This work was supported by the “Ministry of Higher Education and Scientific Research”.


The authors declare that they have no conflicts of interest.

Supplementary material


  1. 1.
    Erckens, H., Beusser, G.-A., Pradalier, C., and Siegwart, R.Y., Avalon, IEEE Rob. Autom. Mag., 2010, vol. 17, no 1, pp. 45–54.CrossRefGoogle Scholar
  2. 2.
    Le Bars, F. and Jaulin, L., An experimental validation of a robust controller with the VAIMOS autonomous sailboat, Robotic Sailing 2012: Proceedings of the 5th International Robotic Sailing Conference, 2013, pp. 73–84.Google Scholar
  3. 3.
    Neal, M., A hardware proof of concept of a sailing robot for ocean observation, IEEE J. Oceanic Eng., 2006, vol. 31, no. 2, pp. 462–469.CrossRefGoogle Scholar
  4. 4.
    Fossen, T., Handbook of Marine Craft Hydrodynamics and Motion Control, John Wiley & Sons, 2011.CrossRefGoogle Scholar
  5. 5.
    Jouffroy, J., A control strategy for steering an autonomous surface sailing vehicle in a tacking maneuver, IEEE International Conference Systems, Man and Cybernetics, 2009, pp. 2391–2396.Google Scholar
  6. 6.
    Abrougui, H. and Nejim, S., Sliding mode control of an autonomous sailboat, 5th International Conference on Green Energy and Environmental Engineering GEEE, Sousse, 2018, vol. 37, pp. 19–24.Google Scholar
  7. 7.
    Lin Xiao and Jouffroy, J., Modeling and nonlinear heading control of sailing yachts, IEEE J. Oceanic Eng., 2014, vol. 39, no. 2, pp. 256–268.CrossRefGoogle Scholar
  8. 8.
    Bin Yang, Lin Xiao, and Jouffroy, J., A control-theoretic outlook at the no-go zone in sailing vessels, OCEANS’11 MTS/IEEE KONA, 2011, pp. 1–7.Google Scholar
  9. 9.
    Legursky, K., A modified model, simulation, and tests of a full-scale sailing yacht, 2012Oceans, 2012.Google Scholar
  10. 10.
    Briere, Y., Iboat: An autonomous robot for long-term offshore operation, The 14th IEEE Mediterranean Electrotechnical Conference,2008. MELECON 2008, 2008, pp. 323–329.Google Scholar
  11. 11.
    Yeh, E.C. and Jenn-Cherng Bin, Fuzzy control for self-steering of a sailboat, Singapore International Conference on Intelligent Control and Instrumentation,1992.SICICI’92.Proceedings, IEEE, 1992, pp. 1339–1344.Google Scholar
  12. 12.
    Stelzer, R., Proll, T., and John, R.I., Fuzzy logic control system for autonomous sailboats, 2007 IEEE International Fuzzy Systems Conference, 2007, pp. 1–6.Google Scholar
  13. 13.
    Treichel, K. and Jouffroy, J., Real-time sail and heading optimization for a surface sailing vessel by extremum seeking control, 55th International Scientific Colloquium (IWK), Ilmenau, 2010.Google Scholar
  14. 14.
    Cruz, N.A. and Alves, J.C., Navigation performance of an autonomous sailing robot, 2014 Oceans–St. John’s, 2014.Google Scholar
  15. 15.
    Romero-Ramirez, M.-A., Contribution à la commande de voiliers robotizes, Thèse de Doctorat, Paris, 2012.Google Scholar
  16. 16.
    Gomes, L., Santos, M., Pereira, T., et al., Model-based development of an autonomous sailing yacht controller, IEEE International Conference: Autonomous Robot Systems and Competitions (ICARSC), 2015, pp. 103–108.Google Scholar
  17. 17.
    Xiao, K., Sliwka, J., and Jaulin, L., A wind-independent control strategy for autonomous sailboats based on Voronoi diagram, Proceedings of CLAWAR 2011: The 14th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, 2011, pp. 109–123.Google Scholar
  18. 18.
    Qian Wang, Mengqi Kang, Jinsong Xu, et al., Autonomous sailboat track following control, Robotic Sailing 2015, Cham, 2016, pp. 125–136.Google Scholar
  19. 19.
    Jaulin, L., Modelisation et commande dun bateau a voile, Proceedings of 3rd Conference Internationale Francophone d’Automatique, Douz, 2004.Google Scholar
  20. 20.
    Jaulin, L., Le Bars, F., Clement, B., et al., Suivi de route pour un robot voilier, Conférence Internationale Francophone d’Automatique CIFA, 2012, pp. 695–702.Google Scholar
  21. 21.
    Melin, J., Modeling, Control and State-Estimation for an Autonomous Sailboat, 2015.Google Scholar
  22. 22.
    Fossen, T., Handbook of Marine Craft Hydrodynamics and Motion Control, John Wiley & Sons, 2011.CrossRefGoogle Scholar
  23. 23.
    Le Bars, F., Jaulin, L., and Ménage, O., Suivi de ligne pour un voilier: Application au robot voilier autonome VAIMOS pour l’océanographie, J. Démonstrateurs, 2013.Google Scholar
  24. 24.
    Jaulin, L. and Le Bars, F., A simple controller for line following of sailboats, Robotic Sailing 2012, 2013, pp. 117–129.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.U.R. Automatic Control and Marine Robotics, Naval AcademyAnnapolisTunisia

Personalised recommendations