Automatic Control and Computer Sciences

, Volume 52, Issue 3, pp 243–249 | Cite as

Low-Frequency Satellite Communication System Technical Means’ Parameters Synthesis by the Requirements for Energetic Concealment and Noise Immunity

  • A. F. Chipiga
  • V. P. Pashintsev
  • V. A. Tsymbal
  • V. V. Zelenevskiy


The method of technical means parameters synthesis by the requirements for energetic concealment and noise immunity has been developed for satellite communication systems that use reduced (down to 30–100 MHz) carrier frequencies and dual antennae diversity. It allows to calculate the dependence of board transmitter’s emitting power, transmission speeds and transmitted signals’ carrier frequency on the signal reception error probability allowed values, radio link’s energetic reserve and the energetic concealment coefficient.


satellite communication system noise immunity energetic concealment lowered frequencies dual antennae diversity technical means’ parameters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kalinin, A.I. and Cherenkova, L.E., Rasprostranenie radiovoln i rabota radiolinii (Propagation of Radio Waves and Operation of Radio Links), Moscow: Svyaz’, 1971.Google Scholar
  2. 2.
    Pashintsev, V.P., Solchatov, M.E., and Gahov, R.P., Vliyanie ionosfery na kharakteristiki kosmicheskih system peredachi informatsii (Influence of Ionosphere on Characteristics of Space Information Transmission Systems), Moscow: Izd. Fiz.-Mat. Lit., 2006.Google Scholar
  3. 3.
    Pashintsev, V.P., Sapozhnikov, A.D., and Vititlov, L.L., Analytical method for evaluating of ionosphere on the noise immunity of space communication systems, Telecommun. Radio Eng., 1991, no. 46, pp. 84–87.Google Scholar
  4. 4.
    Pashintsev, V.P., Influence of the frequency-selective fading on measuring the time delay of signals from space communications systems, J. Commun. Technol. Electron., 1998, vol. 43, no. 4, pp. 373–377.Google Scholar
  5. 5.
    Pashintsev, V.P., Kolosov, L.V., Tishkin, S.A., and Smirnov, A.A., Influence of the ionosphere on signal detection in space communications systems, J. Commun. Technol. Electron., 1999, vol. 44, no. 2, pp. 132–139.Google Scholar
  6. 6.
    Pashintsev, V.P., Tishkin, S.A., and Solchatov, M.E., Effect of frequency-selective fading and intersymbol interference on interference immunity of high-speed systems of space communication, Izv. Vyssh. Uchebn. Zaved., Radioelektron., 2001, vol. 44, no. 9, pp. 49–60.Google Scholar
  7. 7.
    Pashintsev, V.P., Strekalov, A.V., Solchatov, M.E., and Borovlev, I.I., Reception interference immunity analysis of signal with arbitrary bases in the space communication channels with limited coherence band, Izv. Vyssh. Uchebn. Zaved., Radioelektron., 2002, vol. 45, no. 1, pp. 23–32.Google Scholar
  8. 8.
    Pashintsev, V.P. and Solchatov, M.E., The reliability and rate of signal transmission over space communication channels with a finite coherence band in the presence of protective intervals, J. Commun. Technol. Electron., 2004, vol. 49, no. 7, pp. 762–768.Google Scholar
  9. 9.
    Senokosova, A.V., Solchatov, M.E., Strekalov, A.V., and Chipiga, A.F., A mathematical model of the ionosphere for estimating the absorption of radio waves in space communication systems, Infokommun. Tekhnol., 2006, vol. 4, no. 1, pp. 77–82.Google Scholar
  10. 10.
    Fink, L.M., Teoriya peredachi diskretnyh soobshenii (Theory of Transmission of Discrete Messages), Moscow: Sov. radio, 1970.Google Scholar
  11. 11.
    Chipiga, A.F. and Senokosova, A.V., A method to ensure energy security of satellite communication system, Cosmic Res., 2009, vol. 47, no. 5, pp. 393–398.CrossRefGoogle Scholar
  12. 12.
    Chipiga, A.F. and Senokosova, A.V., Information protection in space communication system using changes in radio wave propagation conditions, Cosmic Res., 2007, vol. 45, no. 1, pp. 52–59.CrossRefGoogle Scholar
  13. 13.
    Chipiga, A.F., Pashintsev, V.P., Galkina, V.A., and Smirnov, A.A., Solution of the problem of providing energetic concealment in satellite communication systems when the radio intercept receiver is located close, Naukoemkie Tekhnol., 2012, vol. 13, no. 7, pp. 30–34.Google Scholar
  14. 14.
    Chipiga, A.F. and Pashintsev, V.P., Increase in the energetic concealment of satellite communications systems when the radio intercept receiver is located close, Nelineinii Mir, 2013, vol. 11, no. 9, pp. 659–671.Google Scholar
  15. 15.
    Kocherzhevskiy, G.N., Antenno-fidernye ustroistva (Antenna-Feeder Devices), Moscow: Radio i svyaz, 1981.Google Scholar
  16. 16.
    Meshalkin, V.A. and Sosunov, B.V., Osnovy energeticheskogo rascheta radiokanalov (Basics of Energy Calculation of Radio Channels), Leningrad: VAS, 1991.Google Scholar
  17. 17.
    Chipiga, A.F., Pashintsev, V.P., Tsymbal, V.A., and Shimanov, S.N., Procedure for calculating the dependence of the energy concealment factor on carrier frequency selection for low-frequency satellite communications system, Autom. Control Comput. Sci., 2016, vol. 50, no. 6, pp. 408–414.CrossRefGoogle Scholar
  18. 18.
    Maslov, O.N. and Pashintsev, V.P., Models of the transionospheric radio channels and noise immunity of space communication systems, Prilozh. Zh. Info-Kommun. Tekhnol., 2006, vol.4.Google Scholar
  19. 19.
    Pashintsev, V.P. and Ahmadeev, P.P., Forecasting of noise immunity of satellite communication and navigation systems according to ionosphere GPS-monitoring data, Electrosvyaz’, 2015, no. 11, pp. 58–65.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • A. F. Chipiga
    • 1
  • V. P. Pashintsev
    • 1
  • V. A. Tsymbal
    • 2
  • V. V. Zelenevskiy
    • 2
  1. 1.North-Caucasus Federal UniversityStavropolRussia
  2. 2.Institute of Engineering PhysicsSerpukhovRussia

Personalised recommendations