Advertisement

Automatic Control and Computer Sciences

, Volume 52, Issue 3, pp 166–174 | Cite as

Kernel Fuzzy Kohonen’s Clustering Neural Network and It’s Recursive Learning

  • Ye. V. Bodyanskiy
  • A. O. Deineko
  • F. M. Eze
Article
  • 16 Downloads

Abstract

The architecture of multilayer kernel clustering neuro-fuzzy system and algorithm of its self-learning are intended for the recovery of overlapped clusters in situations when the streams of observations are fed in the online mode is proposed. The designed system, based on the T. Kohonen’s self-organizing map, permits to recover linearly nonseparated data classes, processes information in an online mode, doesn’t suffer from the “curse of dimensionality” and is easy in implementation.

Keywords

data stream mining overlapped clusters kernel clustering neural network evolving system neuro-fuzzy system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Xu, R. and Wunsch, D.C., Clustering, Hoboken, NJ: John Wiley and Sons, Inc., 2009.Google Scholar
  2. 2.
    Kohonen, T., Self-Organizing Maps, Berlin: Springer-Verlag, 1995.CrossRefzbMATHGoogle Scholar
  3. 3.
    Haykin, S., Neural Networks. A Comprehensive Foundation, Upper Saddle River, N.J.: Prentice Hall, Inc., 1999.zbMATHGoogle Scholar
  4. 4.
    Girolami, M., Mercer kernel-based clustering in feature space, IEEE Trans. Neural Networks, 2002, vol. 13, no. 3, pp. 780–784.CrossRefGoogle Scholar
  5. 5.
    Kim, D.-W., Lee, K., and Lee, K.H., Evaluation of the performance of clustering algorithms in kernel-based feature space, Pattern Recognit., 2002, no. 35, pp. 2267–2278.CrossRefGoogle Scholar
  6. 6.
    MacDonald, D. and Fyfe, C., Clustering in data space and feature space, ESANN'2002 Proc. European Symp. on Artificial Neural Networks, Bruges, 2002, pp. 137–142.Google Scholar
  7. 7.
    Camastra, F. and Verri, A., A novel kernel method for clustering, IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, no. 5, pp. 801–805.CrossRefGoogle Scholar
  8. 8.
    Hastie, T., Tibshirani, R., and Friedman, J., The Elements of Statistical Learning. Data Mining, Inference, and Prediction, New York: Springer Science & Business Media, LLC, 2009.zbMATHGoogle Scholar
  9. 9.
    Kung, S.Y., Kernel Methods and Machine Learning, Cambridge: University Press, 2014.CrossRefzbMATHGoogle Scholar
  10. 10.
    Zhang, D.-Q. and Chen, S.-C., Fuzzy clustering using kernel method, Proc. Int. Conf. on Control and Automation ICCA, 2002, pp. 162–163.Google Scholar
  11. 11.
    Zhang, D.-Q. and Chen, S.-C., Kernel based fuzzy and possibilistic c-means clustering, Proc. Int. Conf. Artificial Neural Networks ICAN 2003, 2003, pp. 122–125.Google Scholar
  12. 12.
    Miyamoto, S. and Mizutani, K., Fuzzy multiset space and c-means clustering using kernels with application to information retrieval, IFSA 2003: Fuzzy Sets and Systems—IFSA, 2003, pp. 387–395.CrossRefGoogle Scholar
  13. 13.
    Zhang, D.-Q. and Chen, S.-C., A novel kernelized fuzzy c-means algorithm with application in medical image segmentation, Artif. Intell. Med., 2004, vol. 32, no. 1, pp. 37–50.CrossRefGoogle Scholar
  14. 14.
    Du, W., Inoue, K., and Urahama, K., Robust kernel fuzzy clustering, FSKD 2005: Fuzzy Systems and Knowledge Discovery, 2005, pp. 454–461.CrossRefGoogle Scholar
  15. 15.
    Filippone, M., Camastra, F., Masulli, F., and Rovetta, S., A survey of kernel and spectral methods for clustering, Pattern Recognit., 2008, vol. 41, pp. 176–190.CrossRefzbMATHGoogle Scholar
  16. 16.
    Havens, T.S., Bezdek, J.S., and Palaniswami, M., Incremental kernel fuzzy c-means, in Computational Intelligence, Madani, K., Eds., Berlin Heidelberg: Springer-Verlag, 2012, pp. 3–18.CrossRefGoogle Scholar
  17. 17.
    Bodyanskiy, Ye.V., Tyshchenko, O.K., and Deineko, A.O., An evolving radial basis neural network with adaptive learning of its parameters and architecture, Autom. Control Comput. Sci., 2015, vol. 49, no. 5, pp. 255–260.CrossRefGoogle Scholar
  18. 18.
    Bezdek, J.-C., Pattern Recognition with Fuzzy Objective Function Algorithms, New York: Plenum Press, 1981.CrossRefzbMATHGoogle Scholar
  19. 19.
    Krishnapuram, R. and Keller, J.M., A possibilistic approach to clustering, IEEE Trans. Fuzzy Syst., 1993, vol. 1, no. 2, pp. 98–110.CrossRefGoogle Scholar
  20. 20.
    Krishnapuram, R. and Keller, J.M., The possibilistic c-means algorithm: Insights and recommendations, IEEE Trans. Fuzzy Syst., 1996, vol. 4, no. 3, pp. 385–393.CrossRefGoogle Scholar
  21. 21.
    Aggarwal, C.C., Data Mining, Cham: Springer, Int. Publ., 2015.CrossRefzbMATHGoogle Scholar
  22. 22.
    Bifet, A., Adaptive Stream Mining: Pattern Learning and Mining from Evolving Data Streams, IOS Press, 2010.zbMATHGoogle Scholar
  23. 23.
    Bodyanskiy, Ye., Deineko, A., Kutsenko, Y., and Zayika, O., Data streams fast EM-fuzzy clustering based on Kohonen`s self-learning, The 1th IEEE International Conference on Data Stream Mining & Processing (DSMP 2016): Proc. of Int. Conf., Lviv, 2016, pp. 309–313.CrossRefGoogle Scholar
  24. 24.
    Mulesa, P. and Perova, I., Fuzzy spacial extrapolation method using Manhattan metrics for tasks of medical data mining, Computer Science and Information Technologies CSIT'2015, Lviv, 2015, pp. 104–106.Google Scholar
  25. 25.
    Perova, I., Pliss, I., Churyumov, G., Eze, F., and Mahmoud, S.M.K., Neo-fuzzy approach for medical diagnostics tasks in online-mode, The 1th IEEE International Conference on Data Stream Mining & Processing (DSMP 2016): Proc. of Int. Conf., Lviv, 2016, pp. 34–38.CrossRefGoogle Scholar
  26. 26.
    Zahirniak, D., Chapman, R., Rogers, S., Suter, B., Kabrisky, M., and Piati, V., Pattern recognition using radial basis function network, Proc. 6th Ann. Aerospace Application of Artificial Intelligence Conf., Dayton: OH, 1990, pp. 249–260.Google Scholar
  27. 27.
    Vapnik, V.N. and Chervonenkis, A.Ja., Teoriya raspoznavaniya obrazov (statisticheskie problemy obucheniya) (Pattern Recognition Theory (The Nature of Statistical Learning Theory)), Moscow: Nauka, 1974.zbMATHGoogle Scholar
  28. 28.
    Cortes, C. and Vapnik, V., Support vector networks, Mach. Learn., 1995, no. 20, pp. 273–297.zbMATHGoogle Scholar
  29. 29.
    Specht, D.F., A general regression neural network, IEEE Trans. Neural Networks, 1991, vol. 2, pp. 568–576.CrossRefGoogle Scholar
  30. 30.
    Bodyanskiy, Ye., Computational Intelligence Techniques for Data Analysis, Bonn: GI, 2005, pp. 15–36.Google Scholar
  31. 31.
    Gorshkov, Ye., Kolodyazhniy, V., and Bodyanskiy, Ye., New recursive learning algorithm for fuzzy Kohonen clustering network, Proc. 17th Int. Workshop on Nonlinear Dynamics of Electronic Systems, Rapperswil, 2009, pp. 58–61.Google Scholar
  32. 32.
    Park, D.C. and Dagher, I., Gradient based fuzzy c-means (GBFCM) algorithm, Proc. IEEE Int. Conf. on Neural Networks, 1984, pp. 1626–1631.Google Scholar
  33. 33.
    Chung, F.-L. and Lee, T., Unsupervized fuzzy competitive learning with monotonically decreasing fuzziness, Proc. 1993 Int. Joint Conf. on Neural Networks, 1993, pp. 2929–2932.Google Scholar
  34. 34.
    Klawonn, F. and Hoppner, F., What is fuzzy about fuzzy clustering. Understanding and improving the concept of the fuzzifier, IDA 2003: Advances in Intelligent Data Analysis, 2003, pp. 254–264.Google Scholar
  35. 35.
    Kolchygin, B. and Bodyanskiy, Ye., Adaptive fuzzy clustering with a variable fuzzifier, Cybern. Syst. Anal., 2013, vol. 49, no. 3, pp. 176–181.MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Deineko, A., Kutsenko, Y., Pliss, I., and Shalamov, M., Kernel evolving neural networks for sequential principal component analysis and its adaptive learning algorithm, Int. Scientific and Technical Conf. “Computer Science and Information Technologies:” Proc. of Int. Conf., Lviv, 2015, pp. 107–110.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • Ye. V. Bodyanskiy
    • 1
  • A. O. Deineko
    • 1
  • F. M. Eze
    • 1
  1. 1.Kharkiv National University of Radio ElectronicsKharkivUkraine

Personalised recommendations