The Effect of a Single Heating Treatment on Laboratory Mice Behavior, Adult Neurogenesis, and the Expression of Heatshock Protein HSP-70

  • O. V. Perepelkina
  • N. A. Ogienko
  • I. G. Lilp
  • D. G. Garbuz
  • A. V. Revishchin
  • G. V. Pavlova
  • I. I. PoletaevaEmail author


Male hybrid mice (F1 CBA × C57BL/6J) were kept for 1.5 h at 39.5°С. In cognitive tests (extrapolation and puzzle-box elementary logic task solution), mice of the experimental groups (after exposure to an elevated temperature) solved the tasks more quickly and more successfully, while their activity in the “small open field” (in which no stress-inducing stimuli were present) and in the Porsolt test (unescapable swimming) was higher than in control mice. In separate experiments, the temporary impairment in the adult neurogenesis (the decrease of new cell numbers detected immunо-histochemically by the marker Ki67) after elevated temperature exposure was demonstrated in both the subgranular area of dentate fascia and in the subventricular proliferative zone of the forebrain. The heating treatment was accompanied by the increase of HSP-70 expression at the time point 3 h after the treatment, while no differences from control were found after 24 h.


hyperthermia behavioral activation cognitive ability elementary logic task adult neurogenesis heat shock proteins hybrid F1 mice. 



The work was supported by the Russian Foundation for Basic Researches (grant no. 17-29-01001 and state registration project AAAA-A16-116021660055-1.


Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. Experiments were performed according to the Directive 2010/63/EU of European Parliament and European Union Council on welfare of animals used for scientific goals.


  1. 1.
    Pastukhov, Yu.F. and Ekimova, I.V., Molecular, cellular and protective functions of the heat shock protein 70 kDa, Neironauki, 2005, vol. 2, no. 2, pp. 3–25.Google Scholar
  2. 2.
    De Maio, A., Extracellular HSP70: Export and function, Curr. Protein Pept. Sci., 2014, vol. 15, no. 3, pp. 225–231.CrossRefGoogle Scholar
  3. 3.
    Bozaykut, P., Ozer, N.K., and Karademir, B., Regulation of protein turnover by heat shock proteins, Free Radic. Biol. Med., 2014, vol. 77, pp. 195–209.CrossRefGoogle Scholar
  4. 4.
    Ren, M., Leng, Y., Jeong, M., Leeds, P.R., and Chuang, D.M., Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: Potential roles of histone deacetylase inhibition and heat shock protein induction, J. Neurochem., 2004, vol. 89, no. 6, pp. 1358–1367.CrossRefGoogle Scholar
  5. 5.
    Santoro, M.G., Heat shock factors and the control of the stress response, Biochem. Pharmacol., 2000, vol. 59, no. 1, pp. 55–63.CrossRefGoogle Scholar
  6. 6.
    Zlatković, J., Bernardi, R.E., and Filipović, D., Protective effect of Hsp70i against chronic social isolation stress in the rat hippocampus, J. Neural Transm. (Vienna), 2014, vol. 121, no. 1, pp. 3–14.CrossRefGoogle Scholar
  7. 7.
    Duhan, V., Joshi, N., Nagarajan, P., and Upadhyay, P., Protocol for long duration whole body hyperthermia in mice, J. Vis. Exp., 2012, vol. 25, no. 66.Google Scholar
  8. 8.
    Bobkova, N., Guzhova, I., Margulis, B., Nesterova, I., Medvedinskaya, N., Samokhin, A., Alexandrova, I., Garbuz, D., Nudler, E., and Evgen’ev, M., Dynamics of endogenous HSP70 synthesis in the brain of olfactory bulbectomized mice, Cell Stress Chaperon, 2013, vol. 18, no. 1, pp. 109–118.CrossRefGoogle Scholar
  9. 9.
    Evgen’ev, M.B., Krasnov, G.S., Nesterova, I.V., Garbuz, D.G., Karpov, V.L., Morozov, A.V., Snezhkina, A.V., Samokhin, A.N., Sergeev, A., Kulikov, A.M., and Bobkova, N.V., Molecular mechanisms underlying neuroprotective effect of intranasal administration of human hsp70 in mouse model of Alzheimer’s disease, J. Alzheimers. Dis., 2017, vol. 59, no. 4, pp. 1415–1426.CrossRefGoogle Scholar
  10. 10.
    Chen, S. and Brown, I.R., Neuronal expression of constitutive heat shock proteins: Implications for neurodegenerative diseases, Cell Stress Chaperon, 2007, vol. 12, no. 1, pp. 51–58.CrossRefGoogle Scholar
  11. 11.
    Zhu, C., Wu, Y., Chen, S., Yu, M., Zeng, Y., You, X., Xiao, J., and Wang, S., Protective immune responses in mice induced by intramuscular and intranasal immunization with a Mycoplasma pneumoniae P1C DNA vaccine, Can. J. Microbiol., 2012, vol. 58, no. 5, pp. 644–652.CrossRefGoogle Scholar
  12. 12.
    Wang, Y.S., Liu, S.J., Huang, S.C., Chang, C.C., Huang, Y.C., Fong, W.L., Chi, M.S., and Chi, K.H., Recombinant heat shock protein 70 in combination with radiotherapy as a source of tumor antigens to improve dendritic cell immunotherapy, Front. Oncol., 2012, vol. 2, p. 149.Google Scholar
  13. 13.
    Ohnishi, K., Matsumoto, H., Takahashi, A., Wang, X., and Ohnishi, T., Heat shock transcription factor, HSF, is activated by ultraviolet irradiation, Photochem. Photobiol., 1996, vol. 64, no. 6, pp. 949–952.Google Scholar
  14. 14.
    Liu, F.F., Miller, N., Levin, W., Zanke, B., Cooper, B., Henry, M., Sherar, M.D., Pintilie, M., Hunt, J.W., and Hill, R.P., The potential role of HSP70 as an indicator of response to radiation and hyperthermia treatments for recurrent breast cancer, Int. J. Hyperthermia, 1996, vol. 12, no. 2, pp. 197–208.CrossRefGoogle Scholar
  15. 15.
    Lee, H.J., Lee, Y.J., Kwon, H.C., Bae, S., Kim, S.H., Min, J.J., Cho, C.K., and Lee, Y.S., Radioprotective effect of heat shock protein 25 on submandibular glands of rats, Am. J. Pathol., 2006, vol. 169, no. 5, pp. 1601–1607.CrossRefGoogle Scholar
  16. 16.
    Schildkopf, P., Frey, B., Ott, O.J., Rubner, Y., Multhoff, G., Sauer, R., Fietkau, R., and Gaipl, U.S., Radiation combined with hyperthermia induces HSP70-dependent maturation of dendritic cells and release of pro-inflammatory cytokines by dendritic cells and macrophages, Radiother. Oncol., 2011, vol. 101, no. 1, pp. 109–115.CrossRefGoogle Scholar
  17. 17.
    Fedotova, I.B., Nikolaev, G.M., Kostyna, Z.A., and Poletaeva, I.I., Remote effects of short-term neonatal hyperthermia in Krushinsky-Molodkina rats prone to audiogenic seizures strain, Dokl. Biol. Sci., 2017, vol. 472, no. 1, pp. 1–3.CrossRefGoogle Scholar
  18. 18.
    Krushinskii, L.V., Biologicheskie osnovy rassudochnoi deyatel’nosti (Biological Elements of Rational Activity), Moscow: Mosk. Gos. Univ., 1977.Google Scholar
  19. 19.
    Poletaeva, I.I., Popova, N.V., and Romanova, L.G., Genetic aspects of animal reasoning, Behav. Genet., 1993, vol. 23, no. 5, pp. 467–475.CrossRefGoogle Scholar
  20. 20.
    Perepelkina, O.V., Golibrodo, V.A., Lilp, I.G., and Poletaeva, I.I., Selection of mice for high scores of elementary logical task solution, Dokl. Biol. Sci., 2015, vol. 460, no. 1, pp. 52–56.CrossRefGoogle Scholar
  21. 21.
    Galsworthy, M.J., Paya-Cano, J.L., Liu, L., Monleón, S., Gregoryan, G., Fernandes, C., Schalkwyk, L.C., and Plomin, R., Assessing reliability, heritability and general cognitive ability in a battery of cognitive tasks for laboratory mice, Behav. Genet., 2005, vol. 35, no. 5, pp. 675–692.CrossRefGoogle Scholar
  22. 22.
    Ben Abdallah, N.M.-B., Fuss, J., Trusel, M., Galsworthy, M.J., Bobsin, K., Colacicco, G., Deacon, R.M., Riva, M.A., Kellendonk, C., Sprengel, R., Lipp, H.P., and Gass, P., The puzzle box as a simple and efficient behavioral test for exploring impairments of general cognition and executive functions in mouse models of schizophrenia, Exp. Neurol., 2011, vol. 227, no. 1, pp. 42–52.CrossRefGoogle Scholar
  23. 23.
    Porsolt, R.D., Animal model of depression, Biomedicine, 1979, vol. 30, no. 3, pp. 139–140.Google Scholar
  24. 24.
    Zucca, P., Milos, N., and Vallortigara, G., Piagetian object permanence and its development in Eurasian jays (Garrulus glandarius), Anim. Cognit., 2007, vol. 10, no. 2, pp. 243–258.CrossRefGoogle Scholar
  25. 25.
    Timoshenko, T.V., Perepelkina, O.V., Markina, N.V., Revischin, A.V., Pavlova, G.V., Poletaeva, I.I., and Sukhih, G.T., Audiogenic epilepsy in mice with different genotypes after neonatal treatments enhancing neurogenesis in dentate gyrus, Bull. Exp. Biol. Med., 2009, vol. 147, no. 4, pp. 458–461.CrossRefGoogle Scholar
  26. 26.
    Cleveland, D.W., Fischer, S.G., Kirschner, M.W., and Laemmli, U.K., Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis, J. Biol. Chem., 1977, vol. 252, no. 3, pp. 1102–1106.Google Scholar
  27. 27.
    Schneider, C.A., Rasband, W.S., and Eliceiri, K.W., NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, 2012, vol. 9, no. 7, pp. 671–675.CrossRefGoogle Scholar
  28. 28.
    Lipp, H.-P., Evolutionary shaping of adult hippocampal neurogenesis in mammals–cognitive gain or developmental priming of personality traits?, Front. Neurosci., 2017, vol. 11, p. 420.CrossRefGoogle Scholar
  29. 29.
    Vilar, M. and Mira, H., Regulation of neurogenesis by neurotrophins during adulthood: Expected and unexpected roles, Front Neurosci., 2016, vol. 10, p. 26.CrossRefGoogle Scholar
  30. 30.
    Rossi, C., Angelucci, A., Costantin, L., Braschi, C., Mazzantini, M., Babbini, F., Fabbri, M.E., Tessarollo, L., Maffei, L., Berardi, N., and Caleo, M., Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment, Eur. J. Neurosci., 2006, vol. 24, no. 7, pp. 1850–1856.CrossRefGoogle Scholar
  31. 31.
    Hashimoto, K., Tomitaka, S., Bi, Y., Narita, N., Minabe, Y., and Iyo, M., Rolipram, a selective phosphodiesterase type-IV inhibitor, prevents induction of heat shock protein HSP-70 and hsp-70 mRNA in rat retrosplenial cortex by the NMDA receptor antagonist dizocilpine, Eur. J. Neurosci., 1997, vol. 9, no. 9, pp. 1891–1901.CrossRefGoogle Scholar
  32. 32.
    Wetsel, W.C., Hyperthermic effects on behavior, Int. J. Hyperthermia, 2011, vol. 7, no. 4, pp. 353–373.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • O. V. Perepelkina
    • 1
  • N. A. Ogienko
    • 1
  • I. G. Lilp
    • 1
  • D. G. Garbuz
    • 2
  • A. V. Revishchin
    • 3
  • G. V. Pavlova
    • 3
  • I. I. Poletaeva
    • 1
    Email author
  1. 1.Department of Biology, Moscow State UniversityMoscowRussia
  2. 2.Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia
  3. 3.Institute of Gene Biology, Russian Academy of SciencesMoscowRussia

Personalised recommendations