Advertisement

Decontamination of Diatom Algae Cultures Contaminated with the Kinetoplastid Bodo saltans Ehrenberg, 1832

  • N. A. DavidovichEmail author
  • O. I. Davidovich
  • Yu. A. Podunay
  • S. L. Polyakova
  • R. Gastineau
RESEARCH ARTICLE
  • 11 Downloads

Abstract—

Cultivation of diatom algae is associated with many problems, one of which concerns the contamination of cultures with various microorganisms. A representative of kinetoplastids, the free-living bacteriotroph Bodo saltans Ehrenberg, 1832, can often be found among contaminants. In the case when B. saltans reaches a high abundance, diatom cells cease to divide, some of them die, becoming a substrate for the development of bacteria, and then the substrate for the next trophic link: kinetoplastids. For the decontamination of diatom cultures, we used amphotericin B, a polyene macrocyclic antibiotic active against some protozoa and fungi. The effect of the drug on B. saltans in cultures of eight species of diatoms, including Ardissonea crystallina (C. Agardh) Grunow, Climaconeis scalaris (Brébisson) E.J. Cox, Entomoneis paludosa (W. Smith) Reimer, Haslea karadagensis Davidovich, Gastineau & Mouget, Pleurosigma aestuarii (Brébisson ex Kützing) W. Smith, Pleurosigma sp., Pseudo-nitzschia calliantha Lundholm, Moestrup & Hasle, and P. pungens (Grunow ex P.T. Cleve) Hasle, was investigated. The rate of division of diatom cells exposed to amphotericin B, depending on the dose and duration of exposure, was experimentally determined. Recommendations on the use of amphotericin B for the decontamination of diatom cultures from B. saltans are given.

Keywords:

diatoms cultivation kinetoplastids contaminant Bodo saltans amphotericin B. 

Notes

FUNDING

The study was carried out within the framework of the state target on the topic “Study of the Fundamental Physical, Physiological, Biochemical, Reproductive, Population, and Behavioral Characteristics of Marine Hydrobionts,” state registration number no. АААА-А19-119012490045-0.

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies with human participants or animals performed by any of the authors.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    Mann, D.G., Size and sex, in The Diatom World. Cellular Origin, Life in Extreme Habitats, and Astrobiology, Seckbach, J. and Kociolek, J.P., Eds., Dordrecht: Springer, 2011, vol. 19, pp. 145–166.Google Scholar
  2. 2.
    Round, F.E., Crawford, R.M., and Mann, D.G., The Diatoms. Biology and Morphology of the Genera, Cambridge: Cambridge Univ. Press, 1990.Google Scholar
  3. 3.
    Geitler, L., Reproduction and life history in diatoms, Bot. Rev., 1935, vol. 1, no. 5, pp. 149–161.CrossRefGoogle Scholar
  4. 4.
    Polyakova, S.L., Davidovich, O.I., Podunai, Yu.A., and Davidovich, N.A., Modification of the ESAW environment used for the cultivation of marine diatoms, Morsk. Biol. Zh., 2018, vol. 3, no. 2, pp. 73–78.Google Scholar
  5. 5.
    Andersen, R.A., Berges, J.A., Harrison, P.J., and Watanabe, M.M., Recipes for freshwater and seawater media, in Algal Culturing Techniques, Andersen, R.A., Ed., New York: Elsevier Academic Press, 2005, pp. 429–538.Google Scholar
  6. 6.
    Gastineau, R., Lemieux, C., Turmel, M., Davidovich, N.A., Davidovich, O.I., Jean-Luc Mouget, J.-L., and Witkowski, A., Mitogenome sequence of a Black Sea isolate of the kinetoplastid Bodo saltans, Mitochondrial DNA Part B, 2018, vol. 3, no. 2, pp. 970–971.CrossRefGoogle Scholar
  7. 7.
    Scheckenbach, F., Wylezich, C., Mylnikov, A.P., Weitere, M., and Arndt, H., Molecular comparisons of freshwater and marine isolates of the same morphospecies of heterotrophic flagellates, Appl. Environ. Microbiol., 2006, vol. 72, no. 10, pp. 6638–6643.CrossRefGoogle Scholar
  8. 8.
    Wood, A.M., Everroad, R.C., and Wingard, L.M., Measuring growth rates in microalgal cultures, in Algal Culturing Techniques, Andersen, R.A., Ed., New York: Elsevier Academic Press, 2005, pp. 269–286.Google Scholar
  9. 9.
    Glantz, S.A., Primer of Biostatistics, New York: McGraw-Hill, Health Professions Division, 1997.Google Scholar
  10. 10.
    Droop, S.J.M., A procedure for routine purification of algal cultures with antibiotics, Br. Phycol. Bull., 1967, vol. 3, no. 2, pp. 295–297.CrossRefGoogle Scholar
  11. 11.
    Guillard, R.R.L., Purification methods for microalgae, in Algal Culturing Techniques, Andersen, R.A., Ed., New York: Elsevier Academic Press, 2005, pp. 117–132.Google Scholar
  12. 12.
    Mitchell, G.C., Baker, J.H., and Sleigh, M.A., Feeding of a freshwater flagellate, Bodo saltans, on diverse bacteria, J. Eukar. Microbiol., 1988, vol. 35, no. 2, pp. 219–222.Google Scholar
  13. 13.
    Zhukov, B.F., Atlas presnovodnykh geterotrofnykh zhgutikonostsev (biologiya, ekologiya, sistematika) (Atlas of Freshwater Heterotrophic Flagellates (Biology, Ecology, and Taxonomy)), Rybinsk: Ryb. Dom pechati, 1993.Google Scholar
  14. 14.
    Arndt, H., Dietrich, D., Auer, B., Cleven, E.-J., Gräfenhan, T., Weitere, M., and Mylnikov, A.P., Functional diversity of heterotrophic flagellates in aquatic ecosystems, in The Flagellates: Unity, Diversity and Evolution, Leadbeater, B.S.C. and Green, J.C., Eds., London: Taylor and Francis, 2000, vol. 59, pp. 240–268.Google Scholar
  15. 15.
    von der Heyden, S. and Cavalier-Smith, T., Culturing and environmental DNA sequencing uncover hidden kinetoplastid biodiversity and a major marine clade within ancestrally freshwater Neobodo designis, Int. J. Syst. Evol. Microbiol., 2005, vol. 55, no. 6, pp. 2605–2621.CrossRefGoogle Scholar
  16. 16.
    Vickerman, K., Appleton, P.L., Clarke, K.J., and Moreira, D., Aurigamonas solis n. gen., n. sp., a soil-dwelling predator with unusual helioflagellate organisation and belonging to a novel clade within the Cercozoa, Protist, 2005, vol. 156, no. 3, pp. 335–354.CrossRefGoogle Scholar
  17. 17.
    Yazaki, E., Ishikawa, S.A., Kume, K., Kumagai, A., Kamaishi, T., Tanifuji, G., Hashimoto, T., and Inagaki, Y., Global Kinetoplastea phylogeny inferred from a large-scale multigene alignment including parasitic species for better understanding transitions from a free-living to a parasitic lifestyle, Genes Genet. Syst., 2017, vol. 92, no. 1, pp. 35–42.CrossRefGoogle Scholar
  18. 18.
    Deeg, C.M., Chow, C.-E.T., and Suttle, C.A., The kinetoplastid-infecting Bodo saltans virus (BsV), a window into the most abundant giant viruses in the sea, eLife, 2018, vol. 7.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • N. A. Davidovich
    • 1
    • 2
    Email author
  • O. I. Davidovich
    • 1
  • Yu. A. Podunay
    • 1
  • S. L. Polyakova
    • 1
  • R. Gastineau
    • 2
  1. 1.Federal State Budget Scientific Institution Vyazemsky Karadag Scientific Station–Nature Reserve of the Russian Academy of SciencesKurortnoeRussia
  2. 2.Natural Sciences Research and Educational Center and Palaeoceanology Unit, Faculty of Geosciences, University of SzczecinSzczecinPoland

Personalised recommendations